Perioperative Management of Anticoagulant and Antiplatelet Therapy: What you need to know in 2019

James D. Douketis MD, FRCP(C), FACP, FCCP Dept. of Medicine, St. Joseph's Healthcare and McMaster University, Hamilton, Canada

Lifetime Disclosures for: J. Douketis

Research Support*	CIHR, HSFC, Bochringer-Ingelheim
Employee	Up-to-Date, Merck Manual
Consultant or Advisory Board Fees*	Actelion, AGEN, Astra-Zeneca, Bayer, Biotie, BMS, Daiichi-Sankyo, Portola, Boehringer-Ingelheim, Cytoli, Janssen, Leo Pharma, Pfizer, Medicines Co., Sanofi Servier
Stockholder, Speaker's Bureau	None
Unlabeled/Unapproved Use Disclosure	None
Speaker's Fees*	Baver, Boehringer-Ingelheim, Pfizer, Leo Pharma, Sanofi

^{*}Funds deposited into university-based research accounts or St. Joseph's Healthcare Foundation.

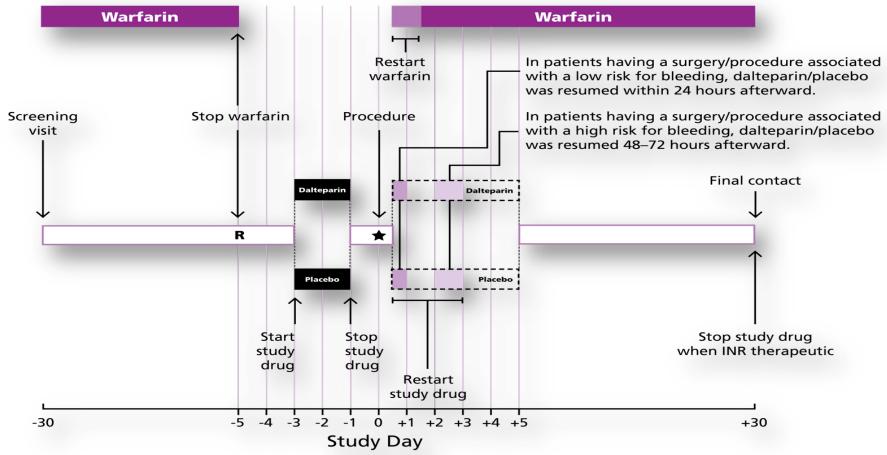
Last 3 years

4 Learning Objectives

- 1) VKA patients: is heparin bridging needed?
- 2) VKA/DOAC patients: is interruption needed?
- 3) DOAC patients: how to manage?
- 4) <u>Dual antiplatelet therapy (coronary stent)</u> patients: how to manage?

Case No. 1

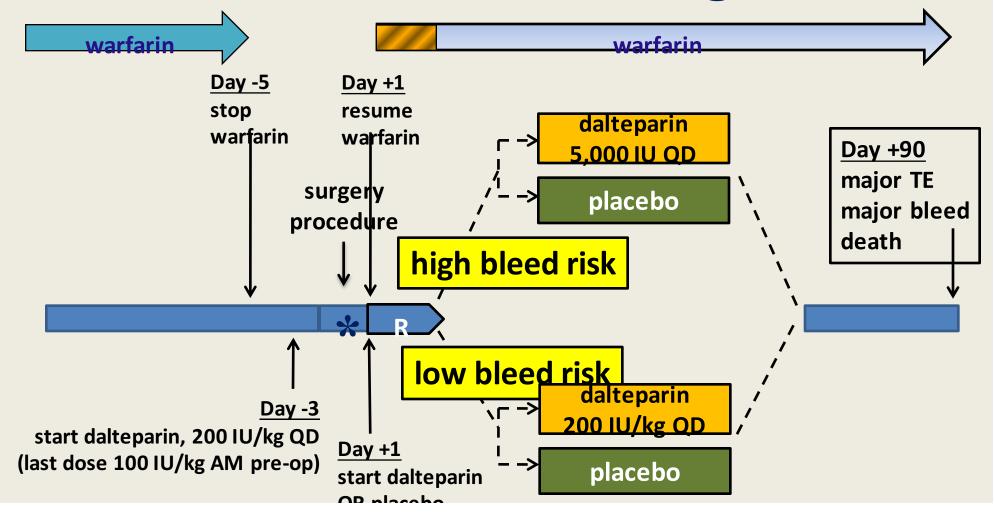
- 70-yr old female with AF on warfarin with hypertension, diabetes, TIA 10 yrs ago (CHADS₂ = 5)
- Scheduled for elective colon resection for incidentally found colon cancer...


One doctor told her she needs to be assessed for heparin bridging.

Another doctor told her she does not need bridging.

Is heparin bridging needed?

BRIDGE: Trial Design


Douketis J, et al. N Engl J Med 2015

BRIDGE Trial: Primary Study Outcomes

Outcome No. (%)	No Bridging (N = 918)	Bridging (N = 895)	P- value
ATE	4 (0.4)	3 (0.3)	0.01 (non-infer.) 0.73 (super.)
- stroke	2 (0.2)	3 (0.3)	
- TIA	2 (0.2)	0 (0)	
- systemic embolism	0 (0)	0 (0)	_
Major bleeding	12 (1.3)	29 (3.2)	0.005 (super.)

Douketis J, et al. N Engl J Med 2015

PERIOP-2: Trial Design

PFRIOP-2. Patients

1,167 with atrial fibrillation

304 with mechanical heart valve (172 aortic, 132 mitral)

Baseline Characteristics			
	Total 🗲	NO Bridging	Bridging
Characteristics	(N=1471)	(N=650)	(N=821)
Age – yr Mean (SD)	69.7 (12.3)	69.2 (12.9)	70.1 (11.9)
Male sex – No. (%)	946 (64.3)	428 (65.9)	518 (63.1)
Sub-Group: Atrial Fibrillation - No. (%)	1167 (79.3)	497 (76.5)	670 (81.6)
	N=1471	N=650	N=821
Sub-Group: Mechanical Valves – No. (%)	304 (20.7)	153 (23.5)	151 (18.4) *
With Atrial Fibrillation – No. (%)	99 (32.6)	46 (30.1)	53 (35.1)
	N=304	N=153	N=151
Mitral – No. (%)	132 (43.4)	67 (43.8)	65 (43.1)
dis SAPET	N=304	N=153	N=151
Aortic – No. (%)	172 (56.6)	86 (56.2)	86 (57.0)
ab 31	N=304	N=153	N=151

^{*} One patient withdrew consent after randomization.

Kovacs MJ, et al. 2018 Blood (abstract)

Table 2

Study Outcomes						
All Participants	No Bridging (N=650) No. (%)	Bridging (N=820) No. (%)	P Value	Risk Diff Bridging- placebo	Lower 95% Cl	Upper 95% CI
Major						
Thromboembolism	7 (1.08)	6 (0.73)	0.48	-0.35	-1.33	0.64
All Deaths	6 (0.92)	6 (0.73)	0.69	-0.19	-1.13	0.75
Major Bleeding	16 (2.46)	12 (1.46)	0.16	-1	-2.45	0.45
Major Bleeding and Major Thromboembolism	23 (3.54)	18 (2.20)	0.12	-1.34	-3.1	0.4
Sub-group: Atrial Fibrillation	No Bridging (N=497)	Bridging (N=670)	P Value			
Major Thromboembolism	7 (1.41)	5 (0.75)	0.27			
Maior Bleeding	13 (2.62)	11 (1.64)	0.25			
Sub- group: Mechanical Valves	No Bridging (N=153) No. (%)	Bridging (N=150) No. (%)	P Value			
Major Thromboembolism	0	1 (0.67)	0.50		2	
Major Bleeding	3 (1.96)	1 (0.67)	0.62		9	

PERIOP-2: Results

Kovacs MJ, et al. 2018 Blood (abstract)

What causes perioperative stroke in anticoagulated patients and how can we prevent it?

Rebound hypercoagulability after stopping OAC

↑ procoagulant factors
during surgery (D-dimer)
perioperative ASA?

intra-op BP + volume control?

vascular disease risk (CHADS₂)

smoking cessation?

stroke pathophysiology

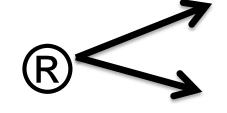
surgery type (CABG, valve, peripheral bypass, carotid endarderectomy)

lipid and genetic factors perioperative statins?

What effect of heparin bridging?

Case No. 2

- 75-kg old female with AF on rivaroxaban, 20 mg QD
 - hypertension, diabetes, TIA 10 yrs ago (CHADS₂ = 5)
 - CrCl = 50 mL/min
- Scheduled for cardiac pacemaker implantation this Monday 9AM, for tach-brady syndrome...


She needs to be off rivaroxaban for at least 2 days...

....she does NOT need to stop rivaroxaban.

BRUISECONTROL-1 Trial

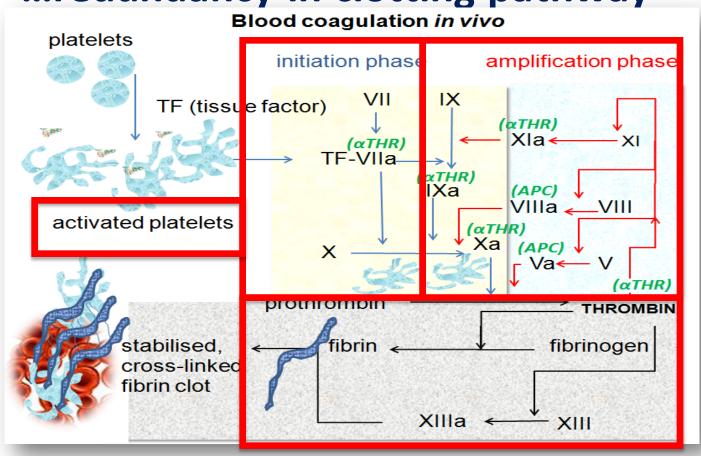
Patients with AF on VKA having pacemaker/ICD

681 patients

continue VKA (INR <3.0)

interrupt VKA + LWMH bridging

Outcomes	Continue	Interrupt	P-value
stroke/TIA (%)	0.3	0	1.0
hematoma* (%)	3.5	16.0	<0.001


rerioperative nemostasis:

(1) continue OAC vs. (2) interrupt +

Safety of on-anticoagulation procedures?

...redundancy in clotting pathway

BRUISE CONTROL-2 Trial

Patients on DOAC having pacemaker/ICD

 continue DOAC (including day of procedure)

662 atients interrupt DOAC for 1 day pre-procedure (2 days if on dabigatran and CrCl <50 mL/min)

Outcomes	Continue	Interrupt	P-value
stroke/TIA (%)	0.3	0.3	1.0
hematoma (%)	2.1	2.1	0.97

^{*}requiring treatment interruption

Birnie DH, et al. Eur Heart J 2017

Case No. 3

- 75-yr old female with AF on apixaban, 5 mg BID
- –hypertension, diabetes, TIA 10 years ago (CHADS₂=5)
- —CrCl = 50 mL/min, for hip replacement Mon 9AM
- She needs to be off apixaban for 2 days
- ...she needs to be off apixaban for 3 days <u>and</u> receive pre-op heparin bridging for 1-2 days <u>and</u> have coagulation testing prior to neuraxial anesthesia

2015 ASRA/ESRA Guidelines on

Narouze S, et al. Reg Anesth Pain Med 2015

dabigatran

apixaban

rivaroxaban /edoxaban

Pre-op Interruption

CrCl 30-50...120 hr

CrCl 50-80... 96 hr CrCl >80.....72 hr

Post-op Resumption

24 hrs

24 hrs

ASRA 2018 update

Horlocker TT, et al. Reg **Anesth Pain Med 2018**

Research

JAMA Internal Medicine | Original Investigation

Perioperative Management of Patients With Atrial Fibrillation Receiving a Direct Oral Anticoagulant

James D. Douketis, MD; Alex C. Spyropoulos, MD; Joanne Duncan, BSc; Marc Carrier, MD, MSc; Gregoire Le Gal, MD; Alfonso J. Tafur, MD; Thomas Vanassche, MD; Peter Verhamme, MD; Sudeep Shivakumar, MD; Peter L. Gross, MD, MSc; Agnes Y. Y. Lee, MD, MSc; Erik Yeo, MD; Susan Solymoss, MD; Jeannine Kassis, MD; Geneviève Le Templier, MD; Stephen Kowalski, MD; Mark Blostein, MD; Vinay Shah, MD; Elizabeth MacKay, MD; Cynthia Wu, MD; Nathan P. Clark, PharmD; Shannon M. Bates, MDCM, MSc; Frederick A. Spencer, MD; Eleni Arnaoutoglou, MD, PhD; Michiel Coppens, MD, PhD; Donald M. Arnold, MD, MSc; Joseph A. Caprini, MD; Na Li, PhD; Karen A. Moffat, MLT; Summer Syed, MD, MSc; Sam Schulman, MD, PhD

Douketis J, et al. JAMA Int Med 2019 ePub Aug 5

Perioperative Anticoagulant Use for Surgery Evaluation (PAUSE) Study (NCT2228798)

- Design: Multi-centre prospective cohort study
- Patients: 2,961 patients with atrial fibrillation (987 per DOAC – dabigatran, rivaroxaban, apixaban)
- Intervention:
 - DOAC-specific pre-procedure interruption interval
 - flexible post-procedure resumption
 - no heparin bridging
 - pre-procedure blood sample

Douketis J, et al. Thromb Haemost 2017

Methods: Patient Eligibility and Intervention

Consecutive adults (≥18 years) with atrial fibrillation:

- receiving DOAC (apixaban, dabigatran, rivaroxaban)
- require DOAC interruption for <u>elective</u> surgery/procedure
- can adhere to planned DOAC interruption

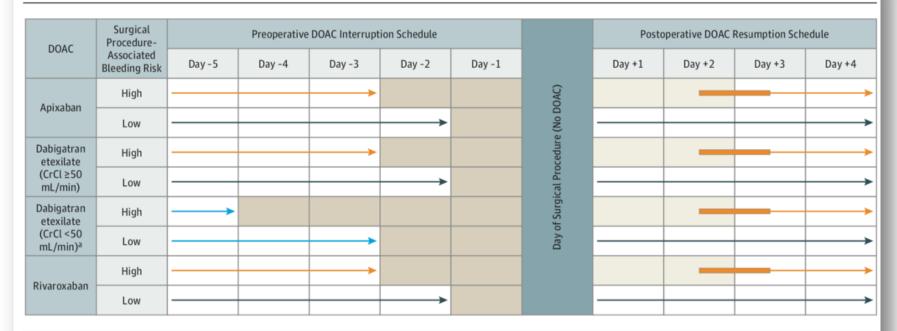
Surg./proced.
classified as HIGH
or LOW bleeding
risk

Excluded if:

- CrCl<30 mL/min (dabigatran, rivaroxaban)
- CrCl<25 mL/min (apixaban)
- cognitive impairment/psychiatric Illness
- non-consenting
- previous participation in study

Blood sample: day of (just before) surgery/procedure

Follow-up: weekly for 4 weeks post-procedure

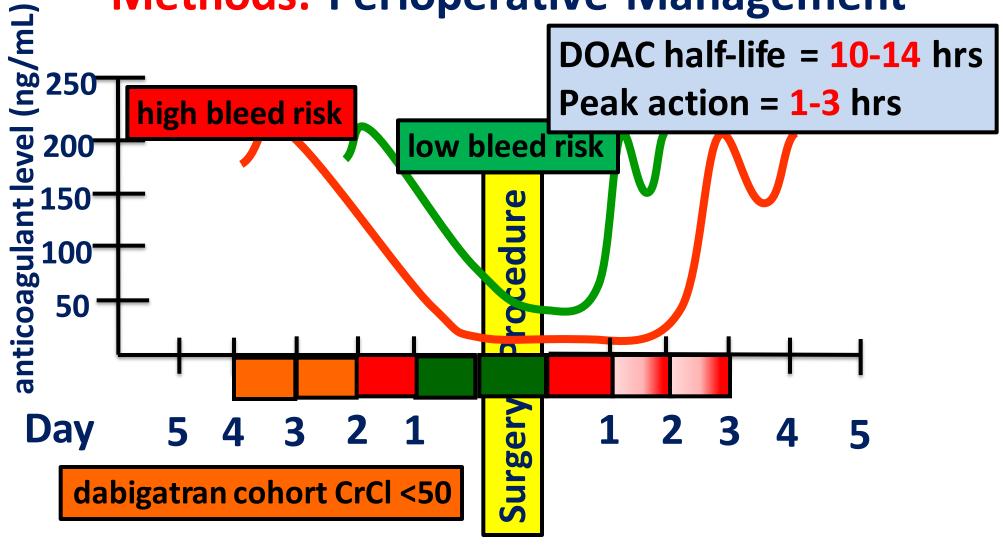

No heparin bridging (low-dose heparin as VTE prophylaxis OK)

Methods: Hypothesis Testing and Sample Size

- Sample size = 2,961 (987 per DOAC) to show that perioperative management for <u>each DOAC</u> associated with:
 - risk for MB = 1% (95% confidence to exclude 2%)
 - risk for ATE = **0.5%** (95% confidence to exclude **1.5%**)

Methods: Perioperative Management

Figure. Perioperative Direct Oral Anticoagulant (DOAC) Management Protocol

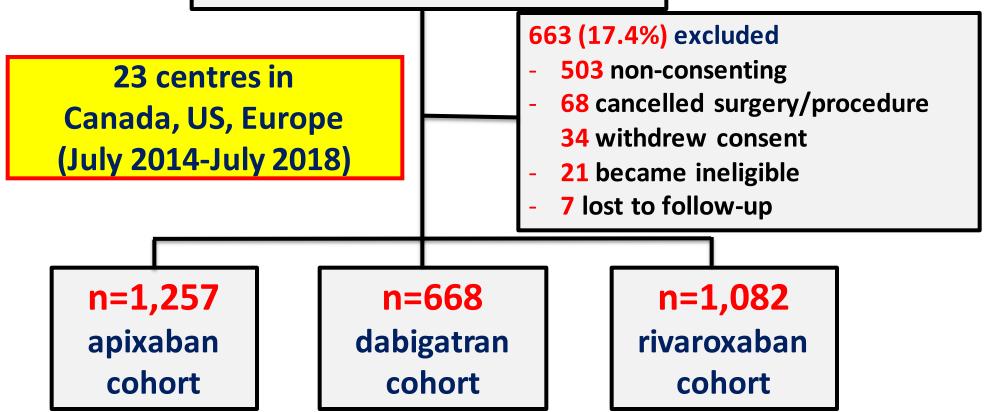


No DOAC was taken on certain days (shaded) and on the day of the elective surgery or procedure. The light blue arrows refer to an exception to the basic management, a subgroup of patients taking dabigatran with a creatinine clearance (CrCl) less than 50 ng/mL. The orange arrows refer to patients having a high-bleed-risk surgical procedure. Dark blue arrows refer to patients having a

low-bleed-risk surgical procedure. The thickened orange part of arrows refer to flexibility in the timing of DOAC resumption after a procedure.

^a Cancer diagnosed within 3 months or has been treated within 6 months or metastatic.

Methods: Perioperative Management



Practical Points on Perioperative Management

- 1) CHADS₂ score did NOT factor into management
- 2) Heparin or LMWH bridging was not indicated.
- 3) VTE prophylaxis post-operatively was acceptable for high-risk patients.
- 4) Pre-operative blood samples taken...but NOT used for clinical decision-making.

Results: Patient Recruitment

3,640 patients screened

Results: Patient Characteristics

Cohort			
Apixaban <i>n=1,257</i>	Dabigatran n=668	Rivaroxaban n=1,082	
73.1	72.4	72.0	
64.0	68.6	67.0	
2.1	2.2	2.0	
2.0	1.9	1.8	
77.9	85.9	82.2	
20.0	37.1	16.7	
12.4	14.7	9.1	
32.3	34.1	34.5	
	73.1 64.0 2.1 2.0 77.9 20.0 12.4	Apixaban n=1,257	

Results: Adherence to Pre- and Postoperative Management Protocols

- 3,007 patients in primary ITT analysis
 - 159 (5.3%) deviated pre-procedure protocol
 - 202 (6.7%) deviated from post-procedure protocol
 - 22 (0.7%) lost to follow-up
- 2,624 (87.3%) patients in per protocol analysis
 - adhered to pre- and post-procedure protocol and not lost to follow-up

Results: Primary Outcomes per protocol

per protocol analysis (87.3%)

Outcome	Cohort (87.3%)		
(%, 95% CI)	Apixaban	Dabigatran	Rivaroxaban
(expected)	<i>n=1257</i>	n=668	n=1082
*Arterial thromboembo- lism (0.5%)	0.16 (0-0.48)	0.5 (0-1.25)	0.37 (0-0.82)
	n=2	n=3	n=4
**Major bleeding (1.0%)	1.2 (0-1.89)	0.90 (0-1.73)	1.7 (0-2.53)
	n=13	n=6	n=16

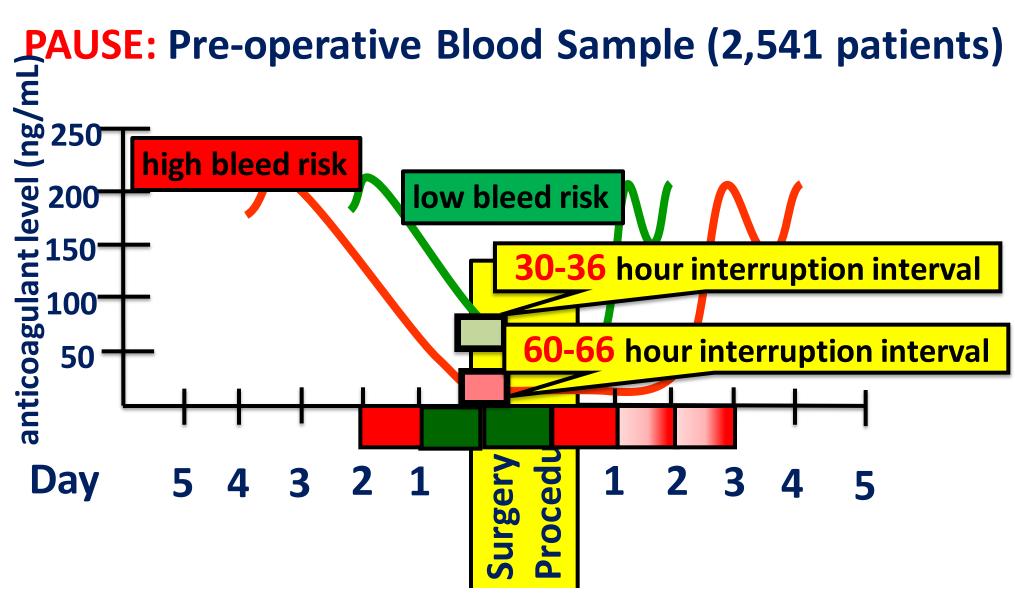
^{*}Ischemic stroke, TIA, systemic embolism

^{**}ISTH definition

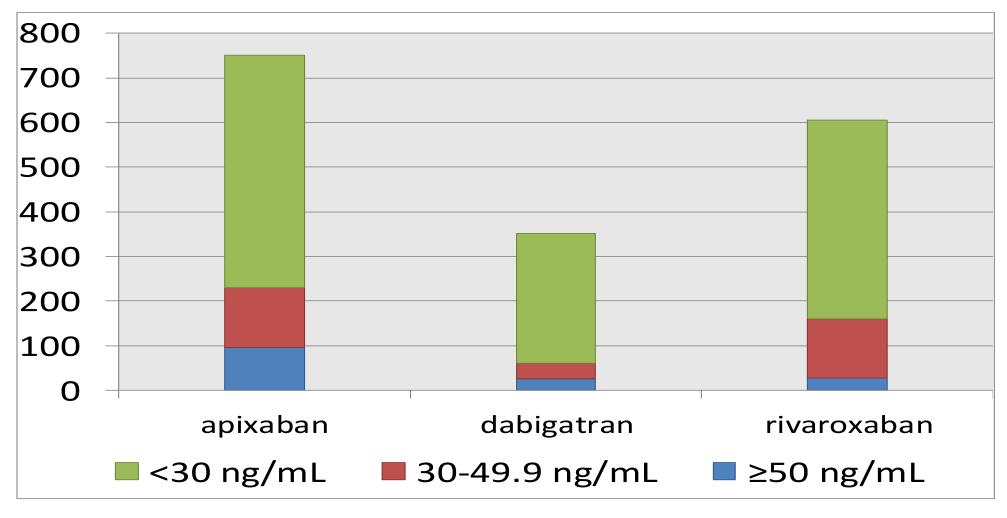
Results: Bleeding According to Surgery/Procedure-related Bleed Risk

Table 4. Incidence of Major Bleeding by Elective Surgery or Procedure-Associated Bleeding Risk					
Apixaban Cohort Dabigatran Etexilate Rivaroxaban Cohort Procedure-Associated Bleeding Risk $(n = 1257)$ Cohort $(n = 668)$ $(n = 1082)$					
Low bleeding risk					
No. (%)	851 (67.7)	440 (65.9)	709 (65.5)		
30-d Postoperative rate of major bleeding, % (95% CI)	0.59 (0-1.20)	0.91 (0-2.01)	1.27 (0-2.17)		
High bleeding risk					
No. (%)	406 (32.3)	228 (34.1)	373 (34.5)		
30-d Postoperative rate of major bleeding, % (95% CI)	2.96 (0-4.68	0.88 (0-2.62)	2.95 (0-4.76)		

Clinical Predictors of Major Bleeding: Multivariate analysis*


Predictor Variable	OR (95% CI)	P-value
DOAC group		
dabigatran vs. apixaban	0.67 (0.26-1.71)	0.401
rivaroxaban vs. apixaban	1.24 (0.64-2.40)	0.514
Hypertension	<mark>3.93 (1.40-11.07)</mark>	<mark>0.010</mark>
Hypertension Female gender	3.93 (1.40-11.07) 0.62 (0.31-1.24)	0.010 0.174

model AUC = 0.69


*unpublished data

Is pre-operative coagulation function testing needed?

...don't tell me I need another blood test!

Low/Mod-Bleed-Risk: 1 d (30-36 hr) off pre-op

High-Bleed-Risk: 2 d (60-68 hr) off pre-op 98.9% (823/832) with DOAC level <50 ng/mL $\mathbf{S}\mathbf{U}$ 300 250 93.1% <30 ng/mL 85.3% <30 ng/mL 200 150 98.9% <30 ng/mL 100 50 \mathbf{O} apixaban dabigatran rivaroxaban <30 ng/mL</p> 30-49.9 ng/mL ≥50 ng/mL

Lab Predictors of Bleeding: Effect of Residual DOAC Level on Major or Any Bleeding*

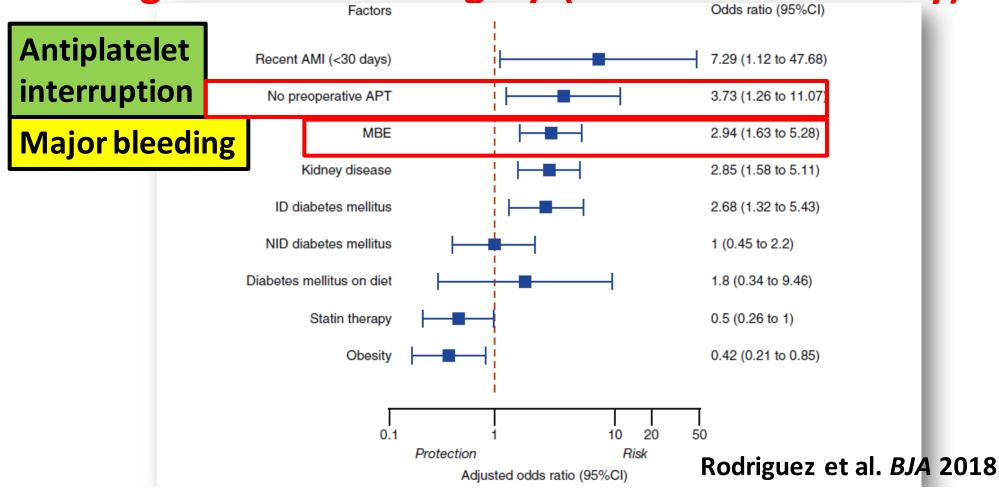
		Major	Bleeding	Major + CRN	IM Bleeding
		n, % (95% CI)	OR (95% CI)	n, % (95% CI)	OR (95% CI)
DOAC Level (ng/mL):					
<30	n =2020	n=27 1.3 (0-1.8)	reference	n=69 3.4 (0-4.2)	reference
30-49.9	n=363	n=6 1.7 (0-3.2)	1.24 (0.5-2.8)	n=14 3.9 (0-5.9)	1.1 (0.6-2.0)
≥50	n=158	n=3 1.9 (0-4.7)	1.43 (0.3-4.1)	n=4 2.5 (0-5.5)	0.7 (0.3-2.0)

^{*}unpublished data

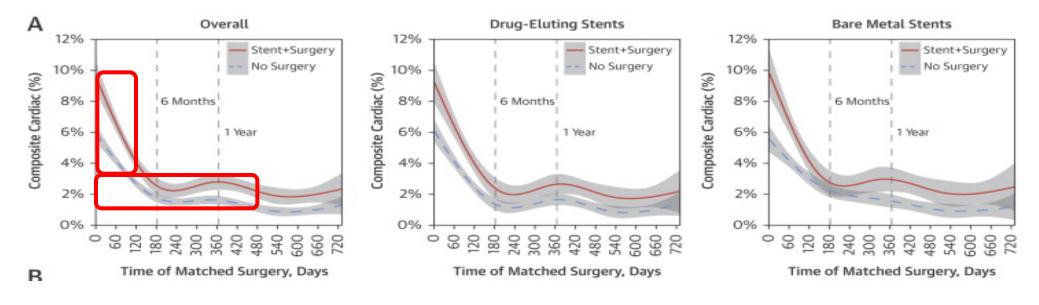
Case No. 4

- 75-year old woman with CAD/CABG and drug-eluting stent (DES) 5 months ago after NSTEMI.
- Other medical problems: hypertension, obesity, type 2 diabetes
- Taking ASA, 81 mg daily, and ticagrelor, 90 mg BID
- Needs surgery for breast cancer resection

Risk factors for MACCE in 1,134 patients with stents during noncardiac surgery (observational study)

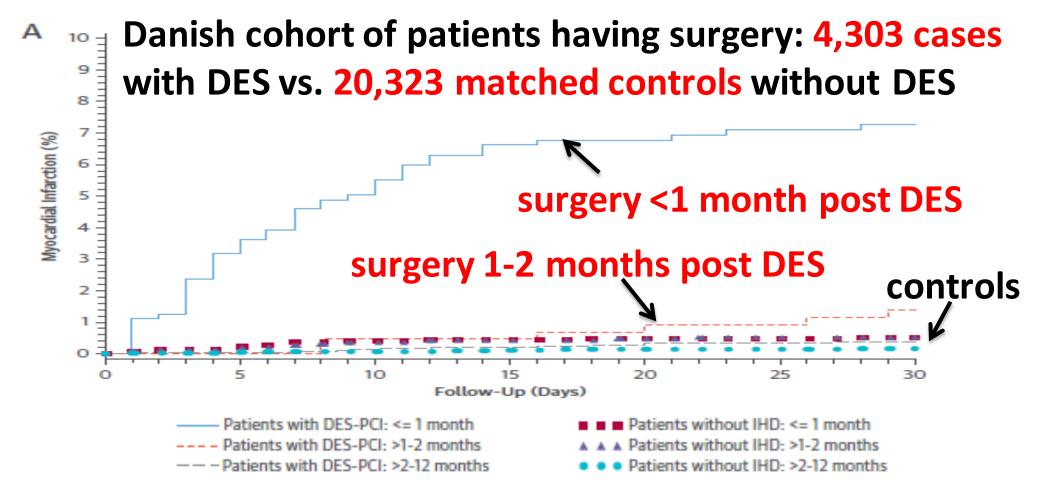

Antiplatelet interruption

	MACCE	
	OR (95% CI)	р
Complete OAT interruption		
No interruption	Reference	
≤5 days	0.67 (0.32 to 1.37)	0.272
>5 days	2.11 (1.23 to 3.63)	0.007
Preoperative haemoglobin		
>12 g/dl	Reference	
(or missing)		
10—12 g/dl	1.13 (0.62 to 2.08)	0.691
<10 g/dl	3.00 (1.23 to 7.29)	0.016
Creatinine clearance	e	
>60 ml/min	Reference	
(or missing)		
30-60 ml/min	1.32 (0.79 to 2.21)	0.287
<30 ml/min	3.51 (1.54 to 8.04)	0.003
Time between PCI and surgery		
0-3 months	0.97 (0.45 to 2.07)	0.938
4-6 months	1.11 (0.48 to 2.58)	0.803
7—12 months	0.70 (0.28 to 1.73)	0.437
More than	Reference	
12 months		i
Urgent surgery	3.08 (1.74 to 5.47)	< 0.001
High-risk surgery	3.59 (2.34 to 5.51)	< 0.001


Surgery urgency

Albaladejo P, et al. Heart 2011

Risk factors for MACCE in 432 patients with stents during non-cardiac-surgery (observational study)



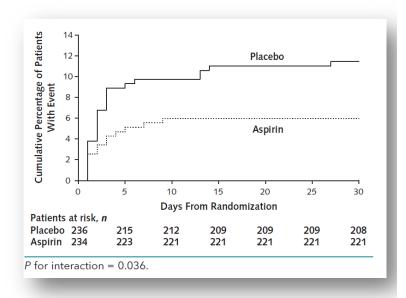
Perioperative risk for MI post-cardiac stent

- U.S. VA retrospective cohort study of patients with coronary stents
- 20,590 cases having surgery vs. 41,180 matched controls

Perioperative Risk for MI post-DES

Egholm G, et al. JACC 2016

ASA before non-cardiac surgery: stop or continue?

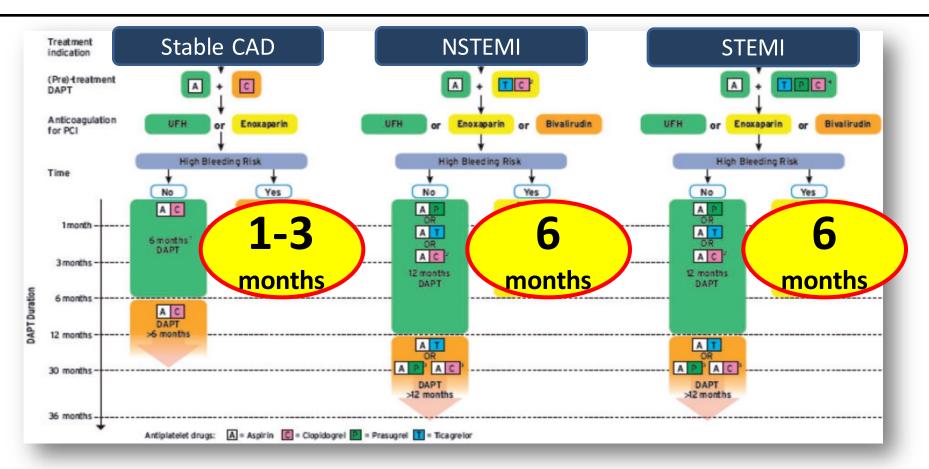

- POISE-2 double-blind 2 × 2 factorial RCT
 - ASA (continue/start) vs. placebo
- Inclusion criteria:
 - patients (≥45 yrs) with or at risk for CV disease having non-cardiac surgery ±taking ASA
- Exclusion criteria:
 - took ASA <72 hrs before surgery</p>
 - BMS within 6 weeks, DES within 12 months

Devereaux PJ, et al. *N Engl J Med* 2014;370:1494

POISE-2 Subgroup with Coronary Stents (n=470)

ASA decreased risk for CV events:

death + non-fatal MI...ARR=5.5% (CI: 0.4-10.5; p=0.04) myocardial infarction...ARR=5.9% (CI:1.0-10.8; p=0.02)



ASA conferred <u>non-significant</u> increased risk for bleeding:

major bleeding......ARI=1.3% (CI: −2.6-5.2)

Graham MM, et al. Ann Intern Med 2018

When to interrupt P2Y₁₂ inhibitor?

Neumann et al. Eur Heart J 2019

When (maybe) to NOT interrupt P2Y₁₂ inhibitor?

Clinical risk ACS at time of index PCI procedure

features Multiple previous MI

Previous stent thrombosis on adequate APT

LVEF < 35%

Chronic kidney disease

Diabetes mellitus

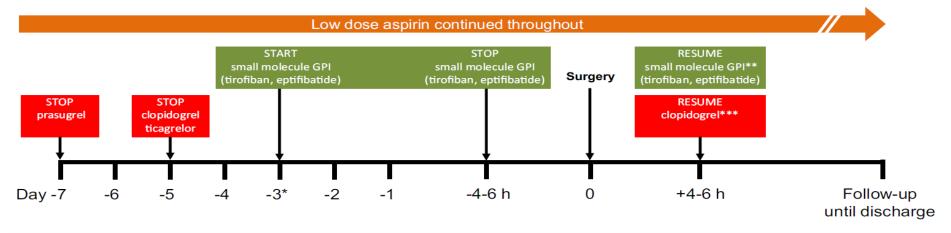
Angiographic risk Long or multiple stents (at least 3 stents implanted or

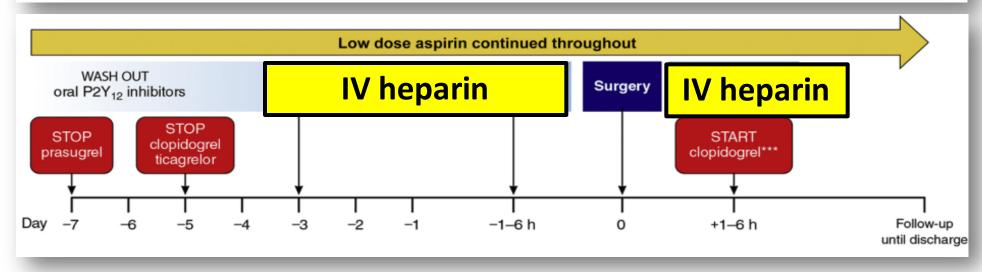
features 3 lesions treated or total stent length >60 mm)

Overlapping stents

Small stent diameter (<2.5 mm)

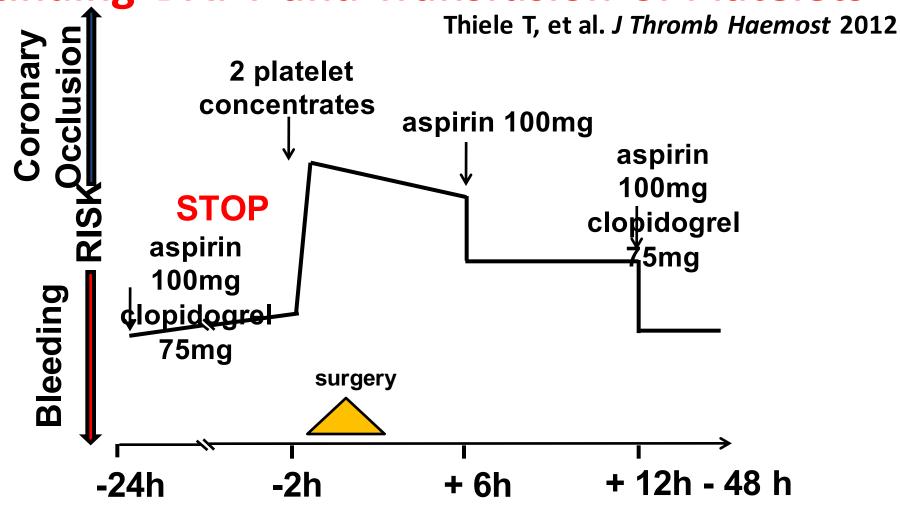
Bifurcation lesions (with 2 stents implanted)


Extensive coronary artery disease


Incomplete revascularization

Treatment of chronic total occlusion

Rossini et al. JACC:CI 2018


Bridging DAPT with GPIIb/IIIa Inhibitors or Cangrelor?

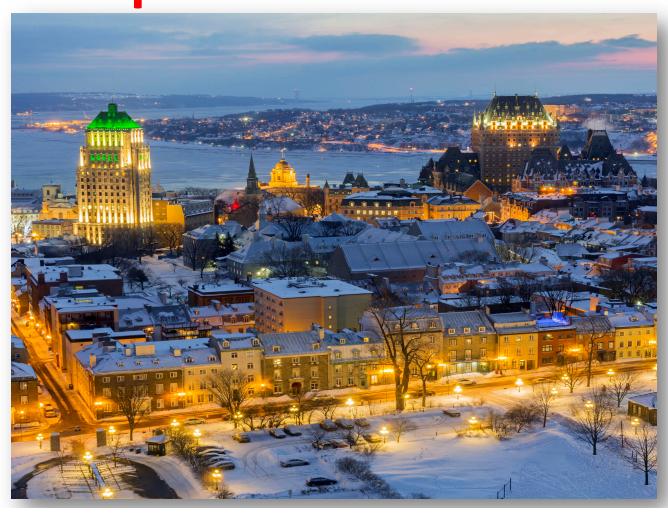
Rossini et al. JACC:CI 2018

Continuing DAPT and Transfusion of Platelets

...back to the Learning Objectives

- 1) VKA patients: is heparin bridging needed?
 - few patients with atrial fibrillation
 - most patients with mechanical heart valve (pre-op)
- 2) VKA/DOAC patients: is interruption needed?
 - not for cardiac device procedures
 - other minor procedures (eye, skin, dental)

...back to the Learning Objectives


3) DOAC patients: how to manage?

- omit 1 day before/after low-bleed-risk and 2 days before/after high-bleed-risk surgery or procedure
- no bridging or coagulation function testing

4) <u>Dual antiplatelet therapy (coronary stent) patients:</u> how to manage?

- in most patients, continue ASA and stop P2Y₁₂ inhibitor 5-7 days pre-surgery
- in a few patients, continue ASA + P2Y₁₂ ± platelet transfusion
 OR bridge with anticoagulant

Merci pour votre attention!

