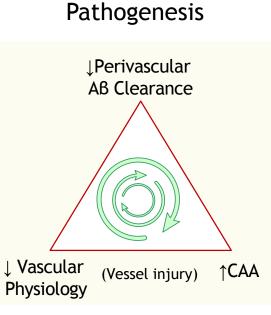

Cerebral Amyloid Angiopathy A Clinical Update

Andreas Charidimou, MD, PhD

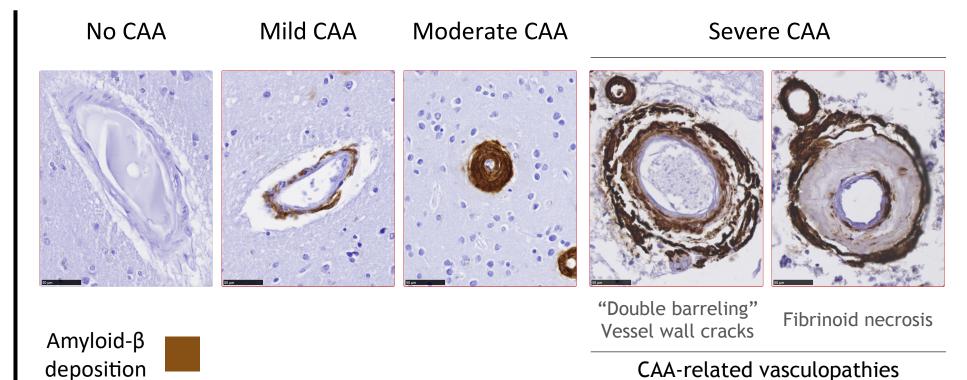
Department of Neurology, Boston University Medical Center Boston University Chobanian & Avedisian School of Medicine

Neurology Service, VA Boston Healthcare System, MA, USA

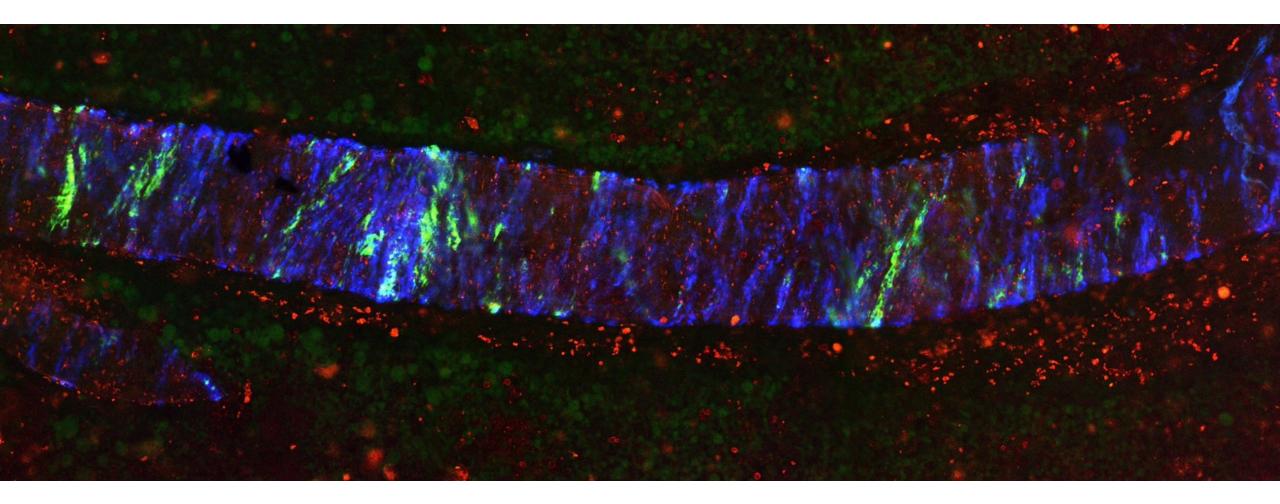
Outline


- Updates on clinical-MRI diagnosis: the Boston Criteria
- Clinical questions, frameworks on CAA and AFib

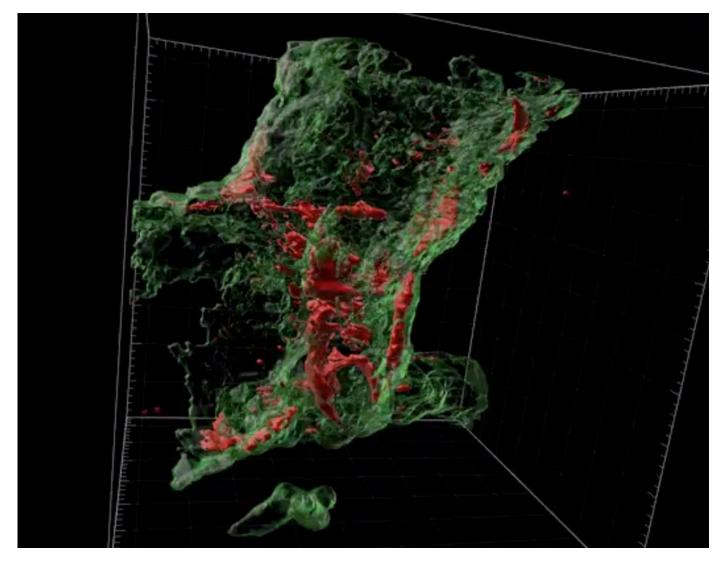
Why should we diagnose CAA?


- High risk of future lobar ICH but in selected patients
- Implications for OAC decisions in Afib
- Presentations w/o ICH, e.g. CAA-TFNEs often misdiagnosed as TIAs
- Key vascular contributor to Cognitive impairment/Dementia
- Core risk factor for ARIA in anti-amyloid trials in AD
- New emerging syndromes, i.e. iatrogenic CAA
- Research/RCTs patient selection

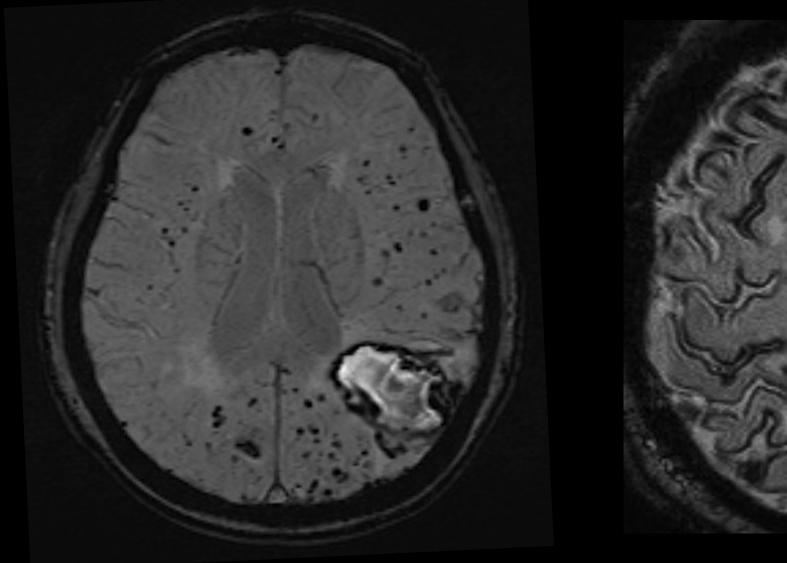
Cerebral Amyloid Angiopathy (CAA):

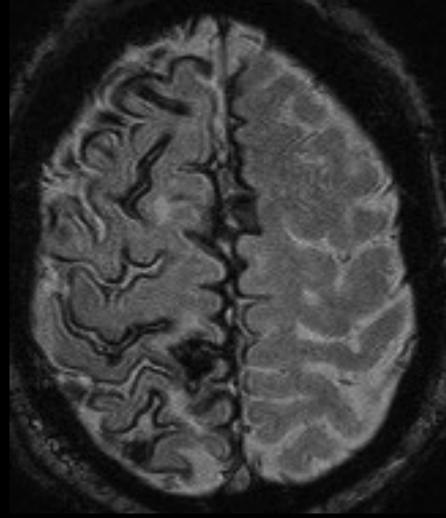

Protein-elimination failure arteriopathy

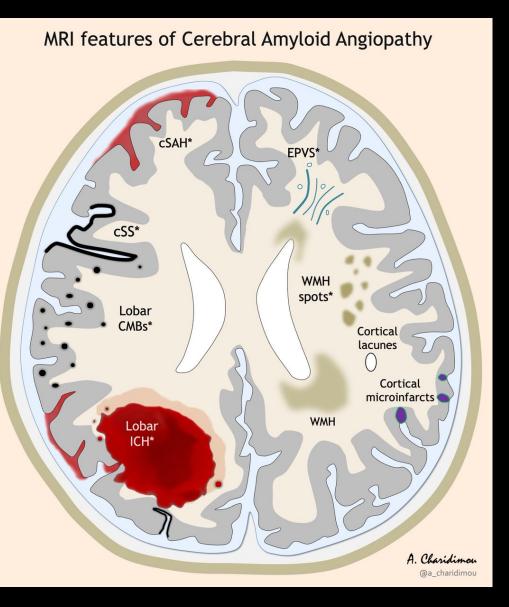
CAA-related vasculopathies

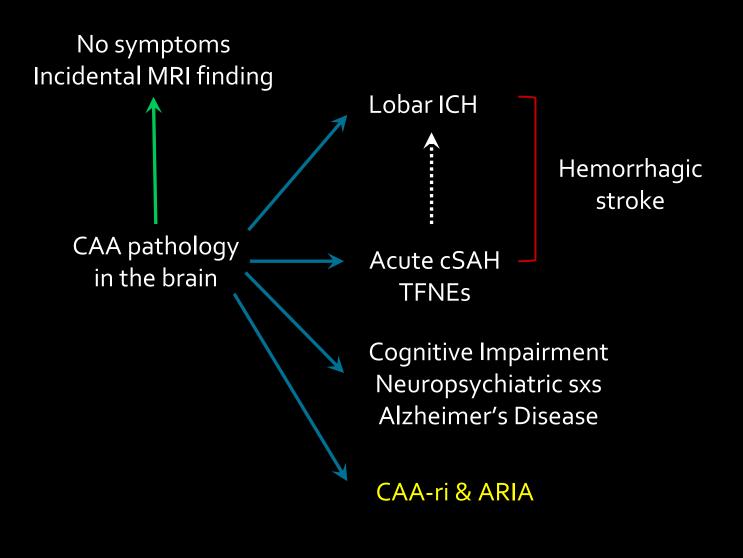

A small artery from the hippocampus of a human brain with CAA (amyloid in blue)

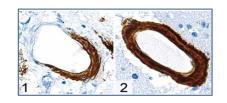
Via: SchragLab @LabSchrag


Degenerated arterioles from human brains with CAA (amyloid in red)

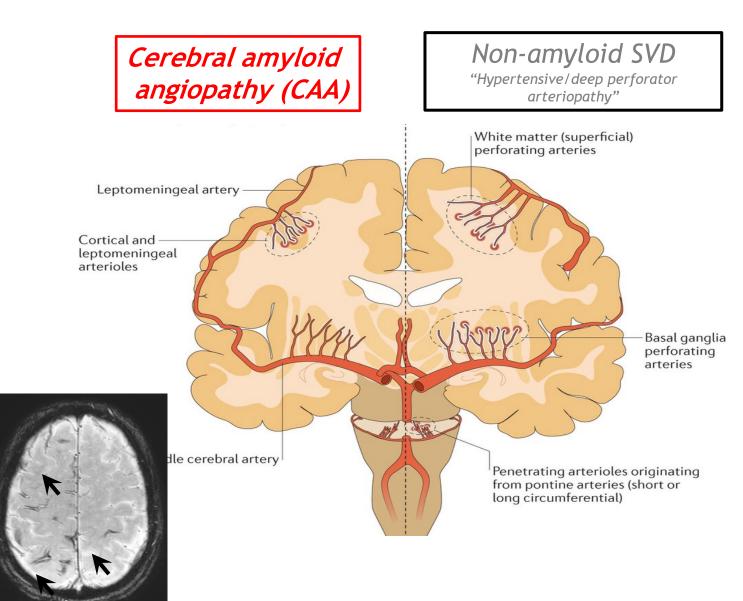


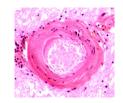

Via: SchragLab @LabSchrag


"Looks like CAA" - Powerful diagnostic tool

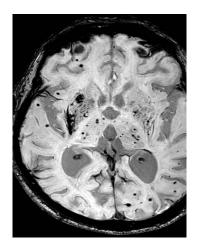


CAA: Radiological markers & Clinical syndromes





The "Yin & yang" SVD model



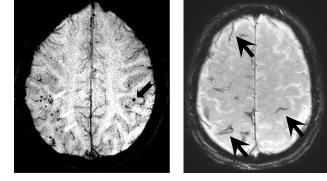
Boston Criteria v1.o and v1.5 ("modified")

Definite CAA

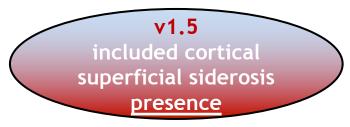
Full postmortem exam with severe CAA Probable CAA with Supporting Pathology Evacuated specimen showing CAA

Probable CAA*

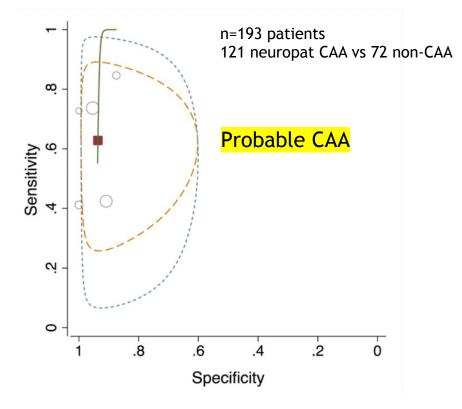
- <u>Multiple</u> (≥2) bleeds/microbleeds
- OR <u>Single</u> bleed/microbleed AND <u>any cSS</u> (focal or disseminated)
- <u>Strictly</u> lobar location (no deep bleeds/microbleeds)
- No other cause


Possible CAA

Single lobar bleed, no other cause


Case records of the Massachusetts General Hospital. Weekly clin Cerebral hemorrhage in a 69-year-old woman receivin

N Engl J Med. 1996 Jul 18:335(3):189-96.


Knudsen Neurology 2001;56:537 Linn *Neurology* 2010;74:1346

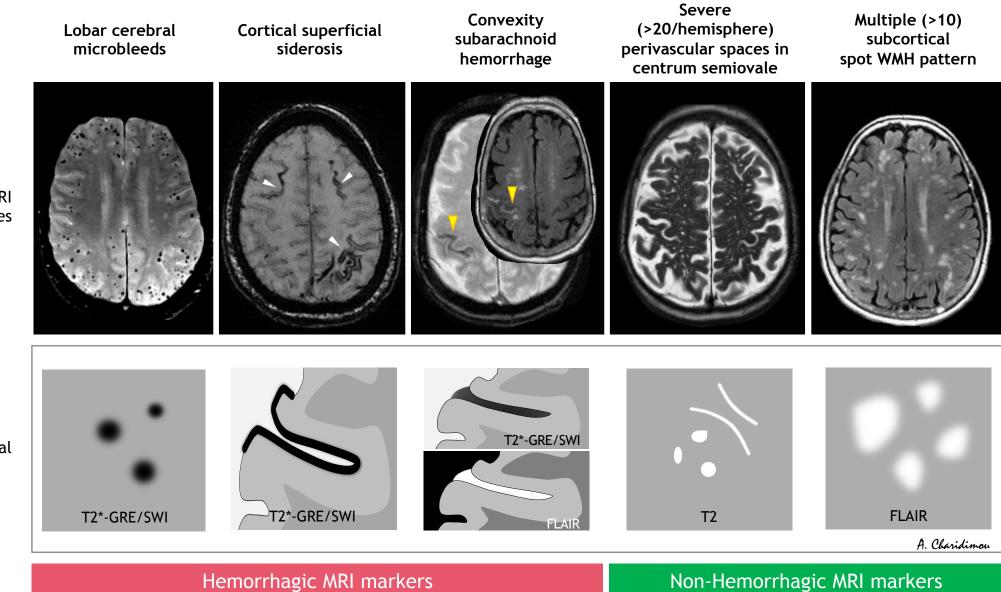
*age ≥55 years, no other cause of hemorrhage

Pathologic validation of Boston Criteria v1/1.5: Limited

Setting		CAA Pathology+Subjects (ICH+/ICH–)	CAA Pathology–Subjects (ICH+/ICH–)		
MRI-neuropathology studies					
Hospital-based ¹⁵		11 (11/0)	4 (4/0)		
Hospital-based ¹⁰	with ICH	38 (27/11)	22 (22/0)		
Hospital-based ¹⁶		14 (9/5)	10 (10/0)		
Hospital-based ¹⁷	without ICH	33 (0/33)	22 (0/22)		
Population-based ¹⁷		22 (0/22)	25 (0/25)		

Charidimou & Boulouis *Stroke* 2022 Charidimou et al. *Int J Stroke*. 2019;14(9):956-971 Greenberg & Charidimou *Stroke* 2018;49:491

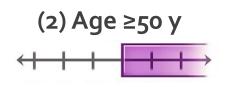
- Probable CAA: widely adopted for research/clinical use
- Image: Specificity, but limited
 sensitivity
- Not widely validated (small cohorts, single center, mostly ICH), new CAA MRI markers
- Updating and larger scale validation
- > Emerging MRI markers to sensitivity (without compromising specificity)
- > Build a robust probable CAA, a more inclusive possible CAA, ICH and non-ICH presentations


Methods for Boston Criteria v2.0

Inclusion criteria

Potential CAA clinical presentation:

- ICH, TFNE, cognitive decline
- Path assessment for CAA (diagnostic gold standard):
 - autopsy, cortical biopsy, hematoma evacuation
- Clinical MRI available
 - including T2*-GRE/SWI, T2-weighted, FLAIR sequences
- Validated new criteria in independent (non-Boston) samples
 - Derivation: MGH Boston 1994-2012 (n=159)
 - Temporal validation: MGH Boston 2012-2018 (n=59)
 - Geographical validation: non-MGH 2004-2013 (n=123)


Key MRI markers of CAA (in Boston criteria v2.0)

Typical MRI examples

Typical MRI signal

Boston Criteria v2.0 for CAA Diagnosis

(3) MRI features

A. Probable CAA

≥ ≥ strictly lobar hemorrhagic lesions in any combination: ICH, CMBs, cSS/cSAH foci

<u>OR</u>

I strictly lobar hemorrhagic lesion + 1 WM feature (Severe CSO-PVS or multispot WMH pattern)

B. Possible CAA

I strictly lobar hemorrhagic lesion: ICH, CMB, cSS/cSAH foci

<u>OR</u>

> 1WM feature (Severe CSO-PVS or multispot WMH pattern)

In patients w CI/Dementia, fulfillment of criteria does not imply CAA as cause/contributor Absence of any deep hemorrhagic lesions (cerebellar lesions not counted) Absence of other causes of hemorrhagic lesions

Boston Criteria v2.0: Best performance

- Total n=401
- All autopsies (n=150): the absolute gold standard
- ICH vs non-ICH
- Probable vs non-probable CAA

	All autopsies (n=150)	ICH (n=75)	Non-ICH (n=75)
Sensitivity	74.5% (65.4-82.4)	90.2% (79.8-96.3)	55.1% (40.2-69.3)
Specificity	95% (83.1-99.4)	92.9% (66.1-99.8)	96.2% (80.4-99.9)
AUC	0.848 (0.794-0.901)	0.915 (0.836-0.995)*	0.756 (0.676-0.836)**

	Prior Criteria (Modified v1.5)
Sensitivity	64.5% (54.9%-73.4%)
Specificity	95% (83.1%-99.4%)
AUC	0.798 (0.741-0.854)

v2.0 superior to v1.5 p=0.0005 *p=0.0047 **p=0.04

Panel: Notable changes in Boston Criteria v2.0 vs v1.5 and their consequences

1. Age cut-off lowered to **50 years and older** (from 55)

2. Potential **CAA-related clinical presentation** is a prerequisite to apply the criteria:

• Spontaneous ICH, TFNEs/cSAH, Cognitive impairment or dementia

3. Presence and multiplicity of cortical superficial siderosis (and cSAH) foci have a more central role

- Probable CAA can now be diagnosed in patients presenting with cortical superficial siderosis only
- 4. Non haemorrhagic features are now included in the criteria (severe perivascular spaces in the centrum semiovale or white matter hyperintensities in a multispot pattern)
 - Hence, CAA can be diagnosed in the absence of haemorrhagic markers

5. INR>3 (and any OAC use) is no longer an exclusion criterion

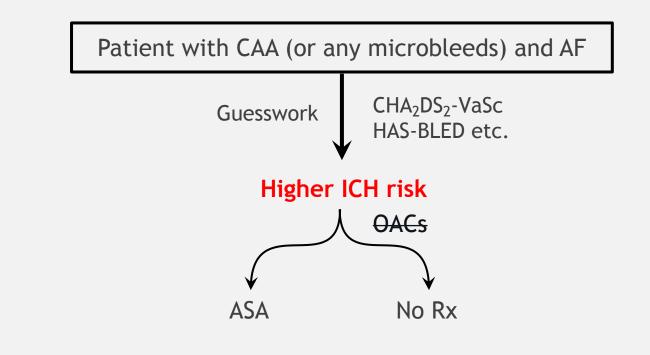
Boston criteria performance in a population-based settings

Boston criteria v2.0	Rush cohort	Boston criteria v1.0	Rush cohort	Framingham cohort
Sensitivity	38.8%	Sensitivity	26.5%	4.5%
Specificity	83.5%	Specificity	90.2%	88%%

- Diagnostic accuracy is rather poor
- Do we really need to diagnose CAA in asymptomatic people?
- Risk of unsubstantiated therapeutic nihilism and withholding beneficial Rx

Maria Clara Zanon Zotin, In preparation

Decision making for stroke prevention in CAA & AF

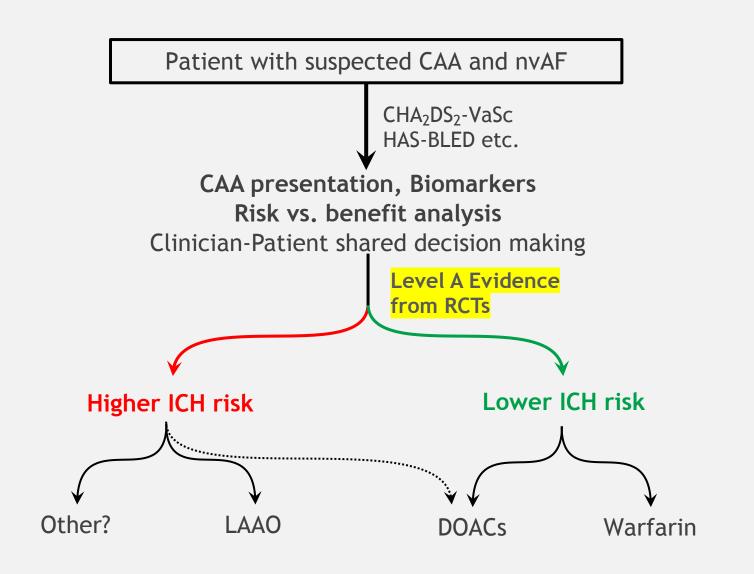

-Clinical framework for decision making in CAA & AF

** When recruitment to a RCT is not available **

-MRI phenotyping in CAA

-Observational data - high risk of bias

How it has been


Common myths:

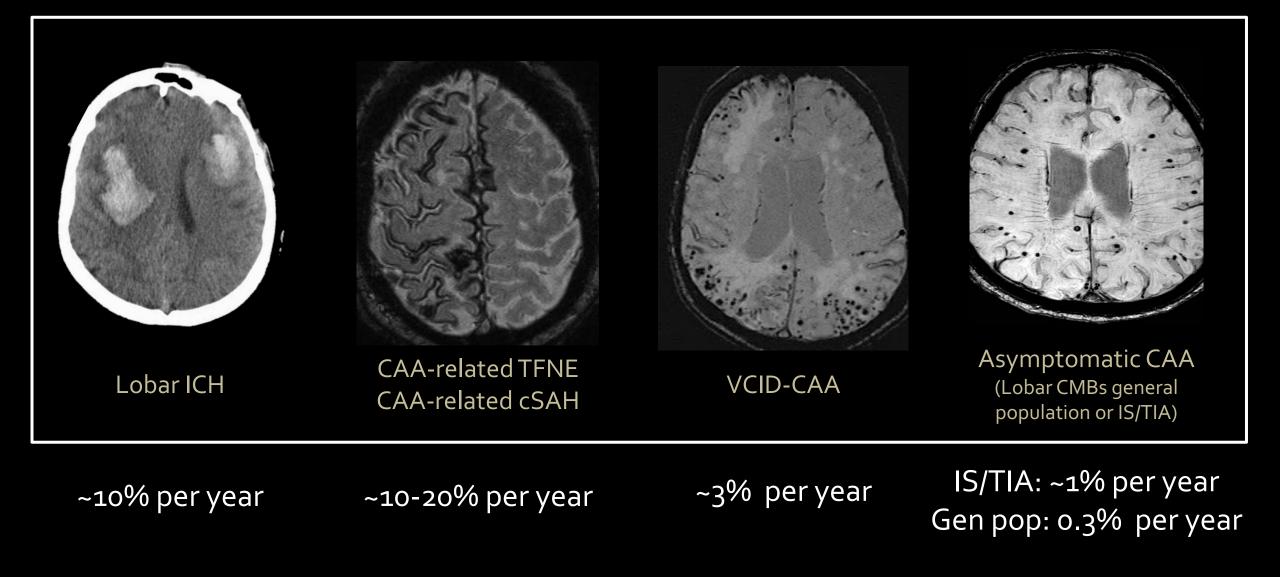
(a) CAA <u>causes</u> ICH

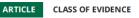
(b) OAC should be avoided in CAA (extremely high ICH risk >> benefit)

(c) Cerebral microbleeds=CAA=ICH

How it should be...TBC

How to get there (until RCT Level A evidence is available)

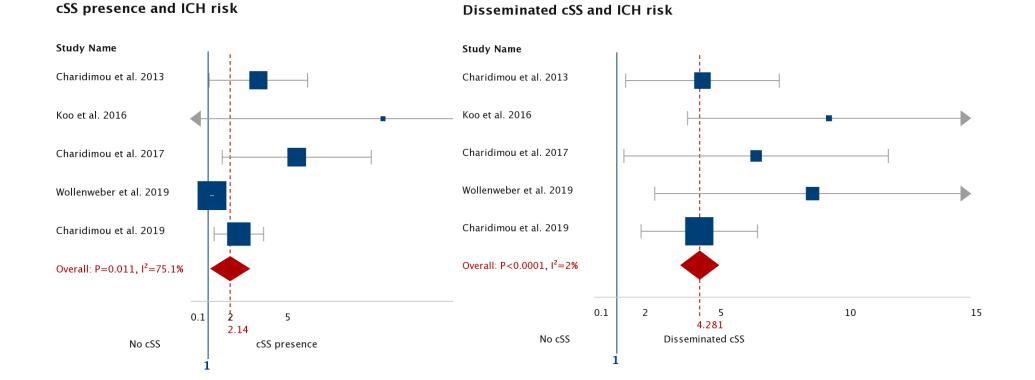

- 1. Estimate baseline ICH risk in CAA (no OAC)
- 2. Expected increase in ICH risk with OAC
- 3. Estimate IS risk without OAC
- 4. Expected reduction in IS risk with OAC


---->Individualized Risk-Benefit analysis

Risk

Benefit

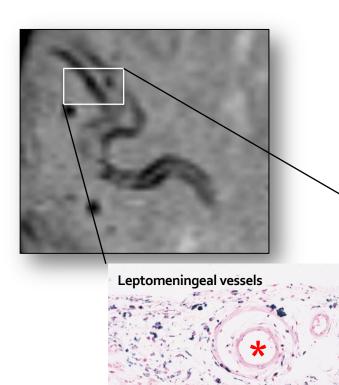
1. Baseline ICH risk depends on CAA phenotype: syndrome, cSS



Cortical superficial siderosis and bleeding risk in cerebral amyloid angiopathy

A meta-analysis

Neurology[®] 2019;93:e1-e11.


- CAA patients: T2*-MRI at baseline and follow-up for future ICH
- Data from 6 eligible studies (n = 1,239)
- Mean follow-up: 3.1 years (range 1–4 years)
- 162/1239 patients had a lobar ICH 6.9% per yr (95% CI: 3.9%–9.8%)
- Pooled HR adjusted for CMBs, WMH, Age, ICH history: <u>CMBs no longer a predictor</u>

Severe CAA

Mild CAA

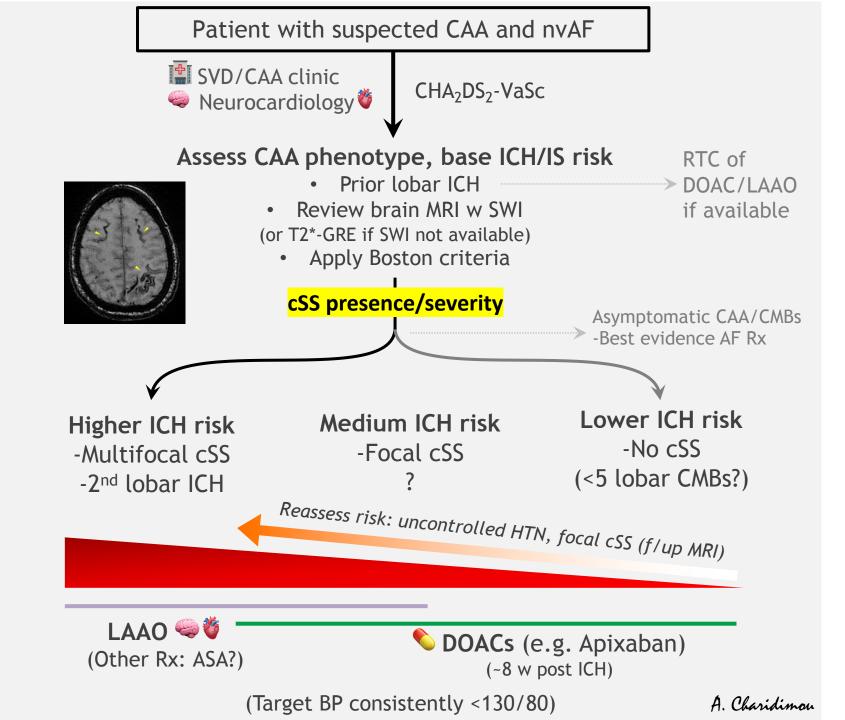
Moderate CAA

Amyloid-β deposition

Cortex

No CAA

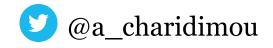
"Double barreling" Vessel wall cracks Fibrinoid necrosis


CAA-related vasculopathies

Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies Lancet Neurol 2019; 18: 653-65

Asymptomatic CAA in ischaemic stroke/TIA patients

	Symptomatic intracranial haemorrhage (n=16 447 for multivariable model)			Symptomatic ischaemic stroke (n=16 464 for multivariable model)		
	Rate, per 1000 patient-years	Absolute rate increase, per 1000 patient-years	Adjusted hazard ratio	Rate, per 1000 patient-years	Absolute rate increase, per 1000 patient-years	Adjusted hazard ratio
None	4 (3–5)		1 (ref)	30 (28–33)		1 (ref)
Any	12 (10–14)	8 (7-9)	2.45 (1.82–3.29)	46 (42–51)	16 (14–18)	1.23 (1.08–1.40)
One	8 (5-12)	4 (2–7)	1.87 (1.23-2.84)	37 (31-44)	7 (3–11)	1.14 (0.94–1.37)
Number						
Two to four	9 (6-14)	5 (3-9)	1.89 (1.22–2.93)	48 (40-56)	18 (12–23)	1.17 (0.97–1.42)
Five or more†	23 (16–31)	19 (13–26)	4.55 (3.08-6.72)	64 (53-77)	34 (25-43)	1.47 (1.19–1.80)
Ten or more†	27 (17-41)	23 (14–36)	5.52 (3.36-9.05)	64 (48-84)	34 (20–51)	1.43 (1.07–1.91)
20 or more†	39 (21–67)	35 (18–62)	8-61 (4-69–15-81)	73 (46–108)	43 (18–75)	1.86 (1.23–2.82)
Anatomical distribution						
Mixed	20 (14–28)	16 (11–23)	2·38 (1·55-3·65)	60 (49-73)	30 (21–40)	1.12 (0.88–1.41)
Deep	17 (13–22)	13 (10–17)	2.57 (1.78–3.70)	57 (49–66)	27 (21-33)	1.14 (0.96–1.36)
Lobar	13 (9–16)	9 (6–9)	1.87 (1.29–2.71)	48 (42–56)	18 (14–23)	1.17 (0.99–1.40)
Probable cerebral amyloid angiopathy	9 (4–18)	5 (1–13)	1·29 (0·60–2·77)	48 (34-66)	18 (6–33)	1·31 (0·94–1·83)


ICH risk according to baseline CMBs in patients treated with OAC (n=7737)

Summary: Approach in CAA-related syndromes

- Patients (≥50 years) with suspected CAA (lobar ICH, TFNEs, cognitive impairment) should have MRI with T2*-GRE or SWI (preferably) for application of the Boston Criteria v2.0
 - The Boston criteria are not meant to be a rigid box!
 - But a conceptual framework to approach CAA diagnosis using available MRI markers/tools
 - Needs familiarity with component CAA MRI markers
- 2. Potential **CAA-related clinical presentation** is a meaningful prerequisite to apply the criteria
- 3. Presence and multiplicity of cortical superficial siderosis are strongly suggestive of CAA
 - could allow for a "provisional CAA" diagnosis in patients with mixed bleeds (data needed)
- 5. Risk-benefit analysis re stroke prevention and anticoagulation decisions, incorporating CAA phenotype, MRI markers (cSS) and a multidisciplinary approach. Randomise!!!

Thank you

andreas.charidimou.09@ucl.ac.uk

Collaborator acknowledgments

Steve Greenberg Gregoire Boulouis Jean-Claude Baron Marco Pasi Stefanie Schreiber Jose Rafael Romero Matthew Frosch Eric Smith Anand Viswanathan David Werring

