Cas clinique 3 : Insulinothérapie intensive

Melissa-Rosina Pasqua, MD, FRCPC

Endocrinologie et métabolisme

Centre Universitaire de Santé McGill

Conflits d'intérêt

- Soutien à la recherche : NIH, Dexcom, Tandem Diabetes Care
- Dr Pasqua a reçu des honoraires de conférencier de Medtronic Diabetes Canada.

Les objectifs de la présentation

- 1. Décrire les composantes d'une insulinothérapie intensive incluant la mesure en continu des glycémies, le facteur de correction et le calcul des glucides.
- 2. Interpréter un profil glycémique ambulatoire et interpréter les données du temps à la cible.
- 3. Ajuster les paramètres d'une insulinothérapie intensive selon les données cliniques.

L'insulinothérapie intensive

- C'est une méthode d'administration d'insuline qui essaie d'imiter la fonction du pancreas
 - L'insuline pour pallier au métabolisme de base
 - L'insuline pour pallier aux fluctuations glycémies liées à la nourriture
- Celle-ci peut être administer par les injections multi-quotidiennes ou par une pompe à insuline
- Avec les injections, on utilise
 - Une insuline à action lente une fois par jour (basal)
 - Une insuline à action rapide à chaque repas (bolus)

Quand préscrire un regime d'insulinothérapie intensive?

- Le diabète de type 1 ou DALA/LADA (diabète auto-immune latent de l'âge adulte)
- Le diabète gestionnel
- Le diabète type 2 où les médicaments d'anti-hyperglycémie sont
 - Contre-indiques (insuffisance rénale ou hépatique), ou
 - Insuffisants pour atteindre le A1c ciblé pour le patient
- Le diabète pancréatique (post-pancréatectomie, fibrose kystique)

Notre cas clinique – Diane Bétus

• Mlle Diane Bétus est une femme de 21 ans, avec le diagnostique de diabète de type 1 depuis 1 mois, après s'être présentée à l'urgence.

 Au congé, l'équipe de médecine interne lui a prescrit de l'insulinothérapie intensive en utilisant le formule de 0,5 unités/kg/jour

Si quelqu'un est 60 kg ...

- 60 kg * 0,5 unités / kg/ jour = 30 unités par jour
- L'insuline basale est 50% de la dose quotidienne totale d'insuline (DQTI) → alors 15 unités d'insuline à action lente (glargine par exemple)
- L'insuline de repas est 50% / 3 de la dose quotidienne totale d'insuline → alors 15/3 = 5 unités chaque repas d'insuline à action rapide (par exemple lispro)
- Il faut calculer une méthode de corriger pour les hyperglycémies... Comment la calculer?

Facteur de correction

- Une façon de créer une méthode de correction selon les besoins et la sensibilité à l'insuline
- Le formule = 100 / la dose quotidienne totale d'insuline (DQTI)
- Par exemple, pour notre cas = 100 / 30 = 3,33 (ou 1 : 3)
- Ce signifie 1 unité peut diminuer la glycémie par environ 3 mmol/L
- ATTENTION = La plupart des échelles à l'hôpital utilise un facteur de correction de 1 unité pour 1 mmol/L, qui est plus approprié pour un patient avec le diabète de type 2

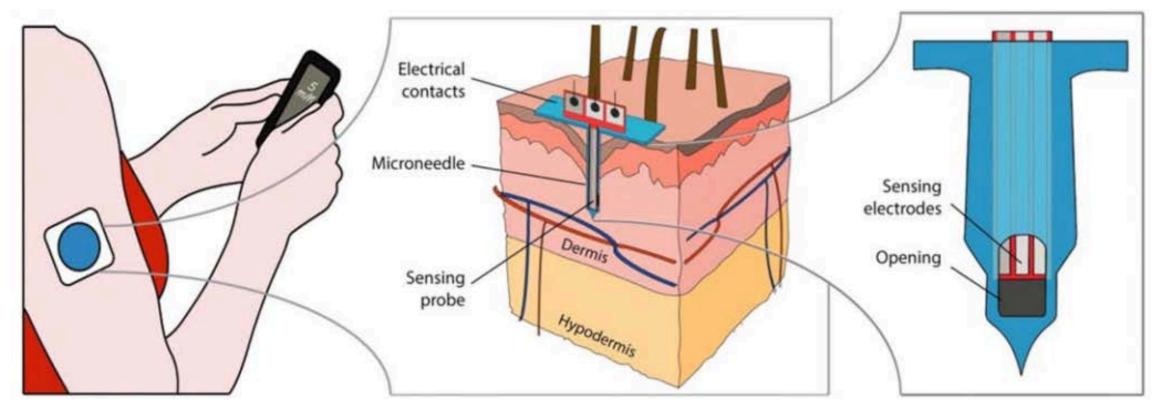
Comme façon d'echelle (but de 6-8 mmol/L)

Mmol/L	Déjeuner	Dîner	Souper	Sans repas
≤ 4,0	3	3	3	0
4,1 – 6,0	4	4	4	0
6,1 - 8,0	5	5	5	0
8,1 - 11,0	6	6	6	1
11,1 - 14,0	7	7	7	2
14,1 – 17,0	8	8	8	3
≥ 17,1	9	9	9	4

Une autre façon (grâce à Dr. Yale)

	BREAKFAST	LUNCH	SUPPER	BEDTIME	TDD		
Lispro	5	5	5	0			
Glargine				15	30	units per c	lay
Sensitivity Factor	3.33	mmol per u	nit of insulin		Goal:	6.5	mmol/L
< = 4.0	4	4	4	0			
4.1-6.0	5	5	5	0			
6.1-8.0	5	5	5	0			
8.1-10.0	6	6	6	1			
10.1-12.0	6	6	6	1			
12.1-14.0	7	7	7	2			
14.1-16.0	8	8	8	3			
>16.0	8	8	8	3			

www.dryale.ca


Quelle méthode est suggérée pour surveiller les glycémies avec cette insulinothérapie?

Quelle méthode est suggérée pour surveiller les glycémies avec cette insulinothérapie?

- La surveillance continue du glucose (SCG)
- Si non = sang capillaire par glucomètre ≥ 4 x/jour

Quelle méthode est suggérée pour surveiller les glycémies avec cette insulinothérapie?

• La surveillance continue du glucose (SCG)

Saroj Kumar Das et al 2022 ECS Sens. Plus 1 031601

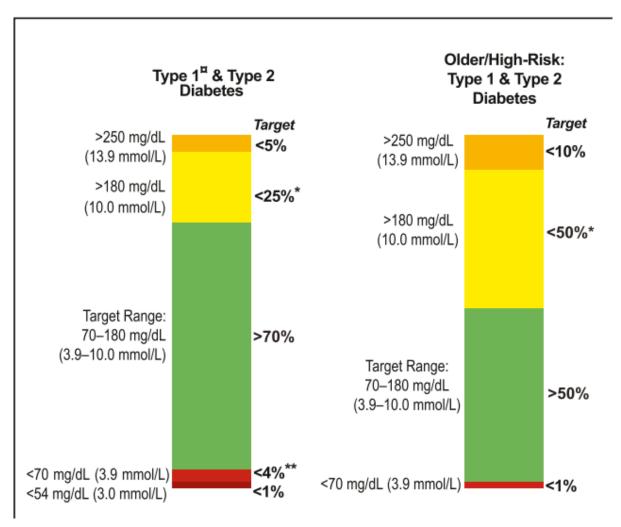
Can J Diabetes 45 (2021) 580-587

Surveillance de la glycémie chez les adultes et les enfants diabétiques : mise à jour de 2021

Chez les personnes* atteintes de diabète de type 1 traitées par insulinothérapie basale en bolus ou par PSCI, qui veulent et peuvent utiliser ces dispositifs presque quotidiennement :

- a) la SCG en temps réel doit être utilisée pour :
 - i. diminuer le taux d'HbA_{1c} et augmenter le temps passé dans l'intervalle cible [catégorie A, niveau 1A (4–8,10)];
 - ii. réduire la durée et l'incidence des épisodes d'hypoglycémie [catégorie A, niveau 1A (5,7,8,10,11)];
 - iii. améliorer des aspects de la qualité de vie liée au diabète (chez l'adulte) [catégorie B, niveau 2 (12,13)];
 - iv. accroître la satisfaction à l'égard du traitement (chez les adultes traités par PSCI) [catégorie B, niveau 2 (61)].

Chez les adultes atteints de diabète de type 1 ayant une mauvaise perception de l'hypoglycémie ou des antécédents récents d'hypoglycémie grave :


- a) la SCG en temps réel doit être utilisée pour réduire l'incidence des épisodes d'hypoglycémie et les épisodes d'hypoglycémie grave [catégorie A, niveau 1A (11)] par rapport à la mesure de la glycémie capillaire.
- b) la SCG en temps réel est recommandée pour réduire la durée des épisodes d'hypoglycémie par rapport à la SCG par balayage intermittent [catégorie B, niveau 2 (23)].

Comment interpréter le SCG?

Comment interpréter le SCG?

Table 2—Standardized CGM metrics for clinical care: 2019 1. Number of days CGM worn (recommend 14 days) (42,43)		
Percentage of time CGM is active (recommend 70% of data from 14 days) (41,42)		
3. Mean glucose		
4. Glucose management indicator (GMI) (75)		
5. Glycemic variability (%CV) target ≤36% (90)*		
6. Time above range (TAR): % of readings and time > 250 mg/dL (>13.9 mmol/L)	Level 2	
7. Time above range (TAR): % of readings and time 181–250 mg/dL (10.1–13.9 mmol/L)	Level 1	
8. Time in range (TIR): % of readings and time 70–180 mg/dL (3.9–10.0 mmol/L)	In range	
9. Time below range (TBR): % of readings and time 54–69 mg/dL (3.0–3.8 mmol/L)	Level 1	
10. Time below range (TBR): % of readings and time <54 mg/dL (<3.0 mmol/L)	Level 2	
Use of Ambulatory Glucose Profile (AGP) for CGM report		
CV, coefficient of variation. *Some studies suggest that lower %CV targets (<33%) provide additional protection against hypoglycemia for those receiving insulin or sulfonylureas (45,90,91).		

Comment interpréter le SCG?

Battelino T, et al. Diabetes Care. 2019 Aug;42(8):1593-1603.

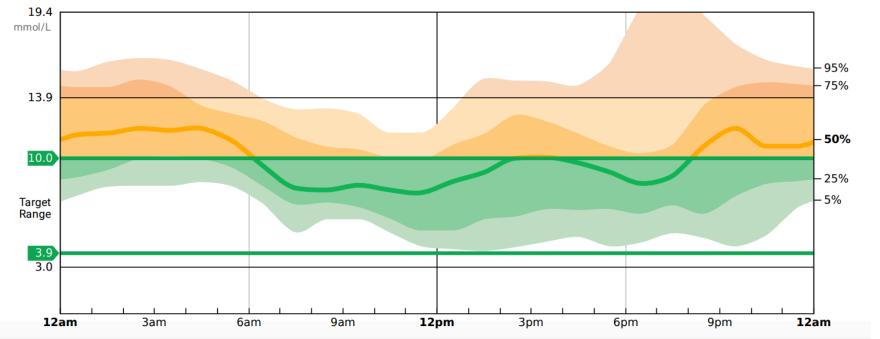
Diane Bétus – 1 mois plus tard à la clinique

Time in Ranges Goals for Type 1 and Type 2 Diabetes Each 5% increase in the Target Range is clinically beneficial. Each 1% time in range = about 15 minutes per day 15% Very High 48% Goal: <5% Goal: <25% 33% High 51% In Range Goal: >70% 1% Low 1% 0% Very Low Goal: <4% Goal: <1% Target Range: 3.9-10.0 mmol/L Very High: Above 13.9 mmol/L

Glucose Metrics

Average Glucose Goal: <8.5 mmol/L	10.1 mmol/L		
GMI Goal: <7%	7.7%		
Coefficient of Variation Goal: <36%	33.3%		
Time CGM Active	87.0%		

Son SCG


< Approximation d'HbA1c

< Paramètre de variabilité

Ambulatory Glucose Profile (AGP)

Very Low: Below 3.0 mmol/L

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if they occurred in a single day.

50% = médiane

Couleur foncé = quartile 25-75%

Couleur pâle = quartile 5-90%

Quelle est l'interprétation de ces données?

- X Durée de la cible est moins de 70%
 - Hyperglycémie qui commence après souper et reste durant la nuit
- X GMI est plus de 7%
- **Unite** un hypoglycémie est < 4%
- Le capteur est utilisé ≥ 70% du temps
- Le coefficient de variabilité est < 36%

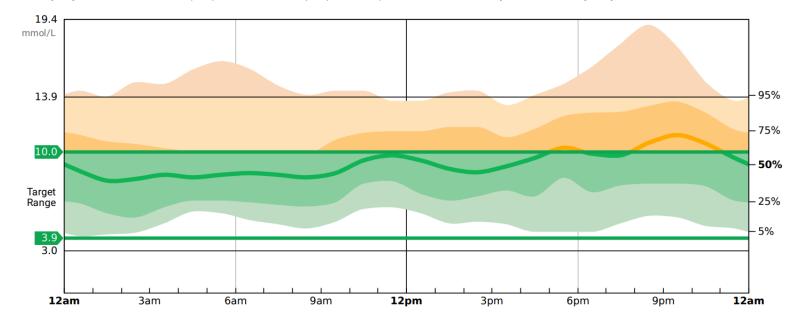
La prescription d'insuline pour les repas

- Dose fixe
 - Besoin des repas avec des quantités de glucides stables et un horaire stable
- Dose selon les glucides
 - Utilise les ratios de glucides (alors 1 Unité pour X grammes de glucides)
 - Besoin d'apprentissage comment compter les glucides (consultation de diététicien)

Comment calculer les ratios de glucides?

- Méthode basée sur les doses déjà utilisées
 - Avec dose de 5 unités, et le nombre de glucides de 50 grammes \rightarrow 5/50
 - → 1 unité : 10 grammes (alors 1: 10 ou 10)
- Méthode basée sur la dose quotidienne totale d'insuline
 - 450 / DQTI
 - Par exemple, 450 / 30 = 15, alors 1 : 15

Pour Diane


- Pour déjeuner, elle mange 30 g de glucides
 - 30g/5 U = ratio de 6
- Pour dîner, elle mange 45 g de glucides
 - 45 g/5 U = ratio de 9
- Pour souper, elle mange 60 g de glucides
 - 60g/5 IU = ratio de 12

Suivi en 3 mois

Ambulatory Glucose Profile (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if they occurred in a single day.

Qu'est-ce qu'on voit?

- Amélioration de durée dans la cible, mais encore < 70%
- C'est plutôt hyperglycémie après souper (notez elle corrige avant de coucher)
- Pour augmenter le dose d'un ratio, il faut diminuer le numéro (on suggère par 10-20%)
 - Alors au lieu de 1:12 → 1:11

Comment ajuster les doses selon l'AGP?

 Si changement de glycémie durant la nuit (une hausse ou une baisse de glycémie) -> change la dose de basal

Si chaque correction est suivie par une hypoglycémie

 il faut changer le facteur de correction