Prehospital and Endovascular Care in the New Era of Ischemic Stroke Treatment

Jeffrey L. Saver, MD, Director, UCLA Comprehensive Stroke Center SA Vice-Chair and Professor of Neurology, DGSOM


UCLA Stroke Center

JLS Disclosures

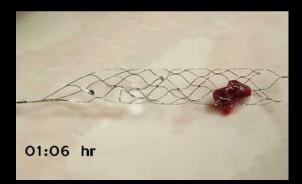
- Employee of the University of California. The University of California has patent rights in retrieval devices for stroke.
- Unpaid site investigator in multicenter trials run by Medtronic, Stryker, and Lundbeck, for which the UC Regents received payments on the basis of clinical trial contracts for the number of subjects enrolled.
- Receives funding for services as a scientific consultant regarding trial design and conduct to Medtronic/Covidien, Stryker, Neuravi, BrainsGate, Pfizer, Boehringer Ingelheim (prevention only), and St. Jude Medical.
- Serves as an unpaid consultant to Genentech advising on the design and conduct of the PRISMS trial; neither the University of California nor Dr. Saver received any payments for this voluntary service.

Talk Outline

- Fast Time and Intravenous Therapies
 » IV TPA
 » Prehospital treatment
- Furious
 - » Endovascular Therapies
 - » Systems of Care
- Future

Montreal Reflections: Eleanor Young

Strategies in Acute Ischemic Stroke Therapy

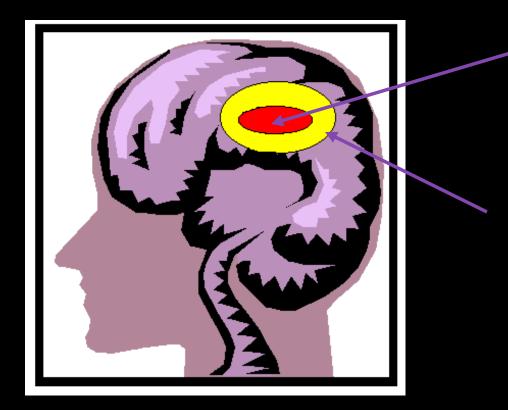

Proven

- » Recanalization
- Supportive Care
- >> Prevent Clot Propagation
- Experimental
 - » Neuroprotection
 - » Collateral Enhancement

Two Major Strategies in Acute Ischemic Stroke Treatment

Reperfusion

Neuroprotection



UCLA Stroke Center

--modified from M Tymianski

The Ischemic Penumbra



Irreversible Core Infarct

Ischemic Penumbra

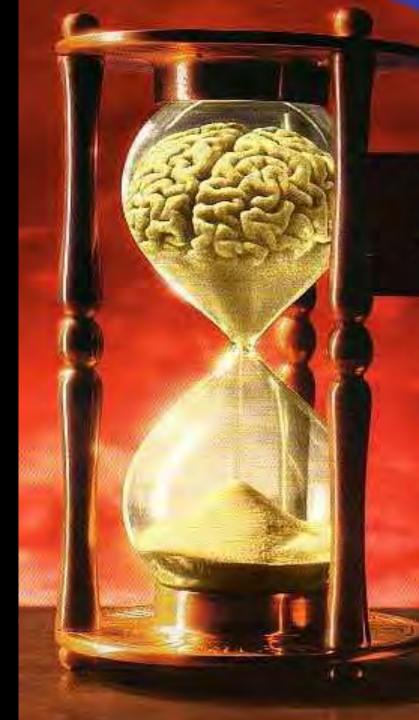
zone of salvageable tissue surrounding core infarct

Brief Time Window in Animal Stroke Models

Permanent

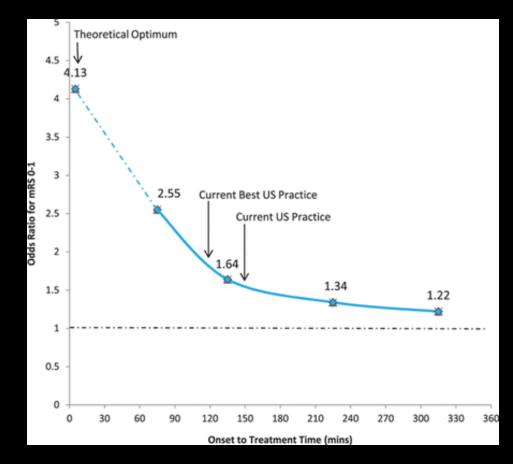
Early

Medium


Late

UCLA Stroke Center

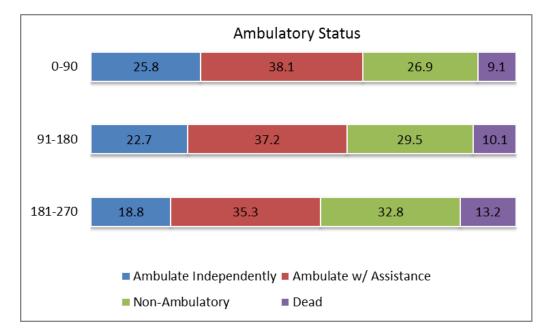
In a typical acute ischemic stroke, every minute the brain loses


- 1.9 million neurons
- 14 billion synapses
- 7.5 miles myelinated fibers

-- Saver, Stroke 2006

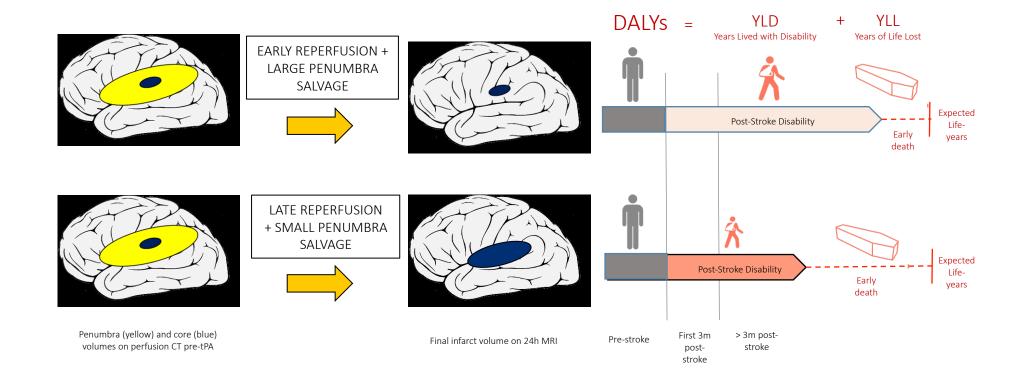
Onset to Treatment Time for IV TPA and Odds of Excellent Outcome

- Pooled, patient level analysis
- 8 trials
 - » NINDS 1 and 2
 - > ATLANTIS A and B
 - » ECASS 1, 2, and 3
 - » EPITHET
- 3670 patients

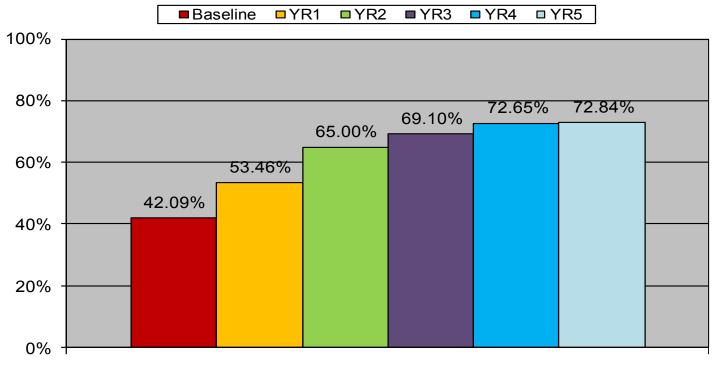


--Lees et al, Lancet 2010 --Saver + Levine, Lancet 2010 --Saver, Stroke 2012

TPA Treatment Time and Benefit Magnitude 58,353 Patients from 1395 GWTG-Stroke Hospitals

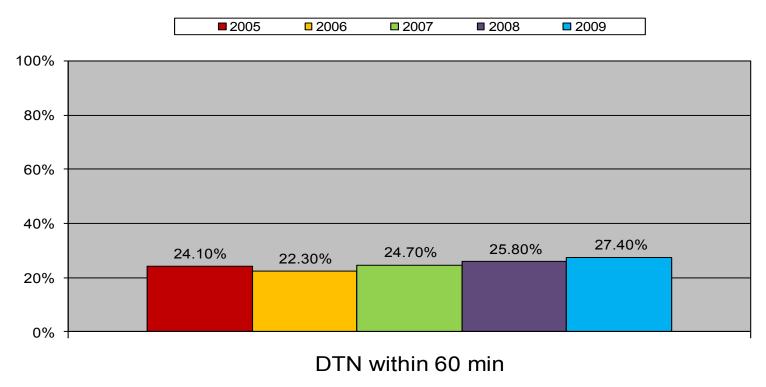


Among 1000 patients, for every 15 min acceleration of tPA treatment


- 18 more will have improved ambulation at discharge
 - Including 8 more who will ambulate fully independently
- 13 more will be discharged to a more independent environment
 - Including 7 more discharged to home
- 4 fewer patients will die prior to discharge

A Drop of Brain (1cc), A Week of Healthy Life Quality Adjusted Life-Years (QALYs)

Improvement Over Time in GWTG-Stroke in the Use of IV rt-PA in Eligible Patients


IV rt-PA 2 Hour

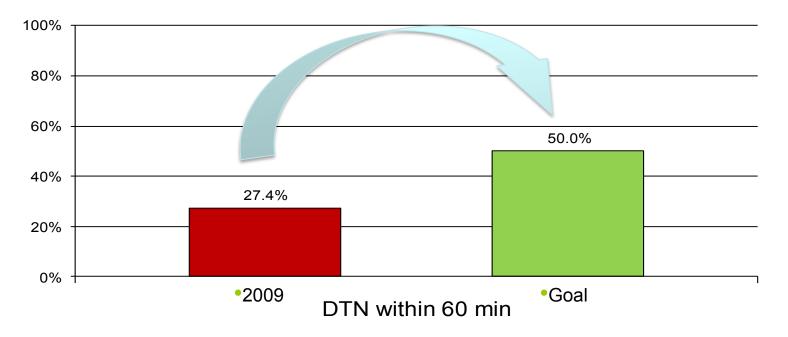
Schwamm LH et al. Circulation 2009;119:107-115

Substantial Opportunity to Improve Timeliness of IV rt-PA in Ischemic Stroke

Door-to-IV rt-PA within 60 minutes

GWTG-Stroke Database, data on file DCRI

STROKEASSOCIATION.ORG/TARGETSTROKE



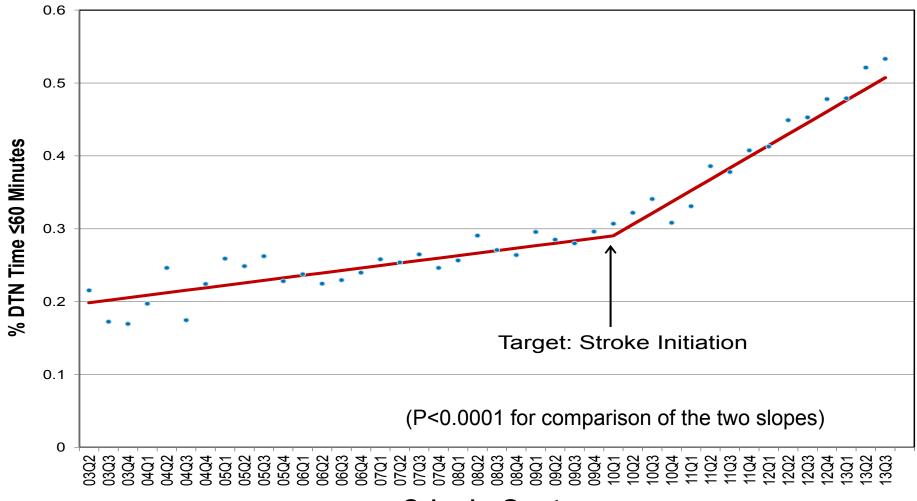
©2010, American Heart Association

Target: Stroke The Time is Now

Door-to-IV rt-PA within 60 minutes

GWTG-Stroke Database, data on file DCRI

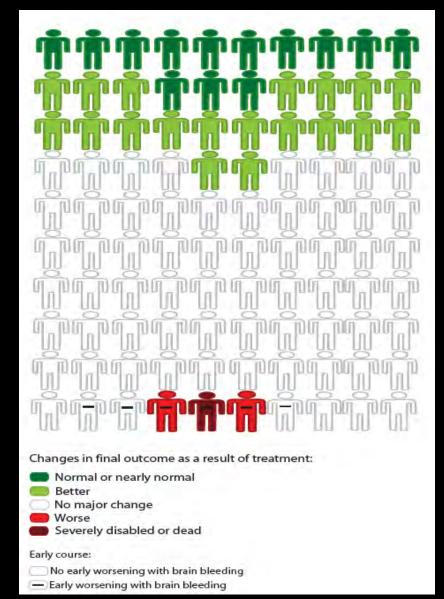
Target: Stroke Best Practice Strategies



- 1. *EMS Pre-Notification
- 2. Stroke Toolkit
- 3. Rapid Triage and Stroke Team Notification
- 4. *Single Call Activation System

- Testing
- 8. *Premix TPA
- *Rapid TPA Access store TPA in ED/ radiology, start in imaging suite
- 10.Team approach
- 5. *Transfer Directly to CT11.*Prompt data feedback
- 6. Rapid Brain Imaging
- 7. *POC Laboratory

Target: Stroke Impact and Success in US: Fonarow et al, JAMA 2014

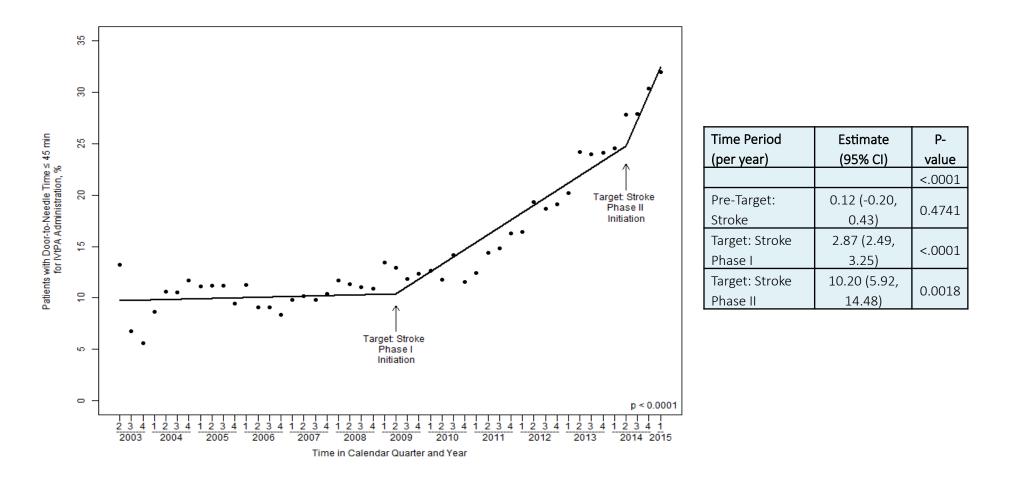

Calendar Quarter

IV TPA Under 3 Hours – Patient Education

- Joint AHA-AAN-ACEP text tool to educate patients and families
- UCLA icon array tool based on AHA-AAN-ACEP

--Gadhia et al, Stroke 2010

UCLA Stroke Center


Target: Stroke Phase 2

TARGET: STROKE[®] SAVING LIVES BY SAVING TIME

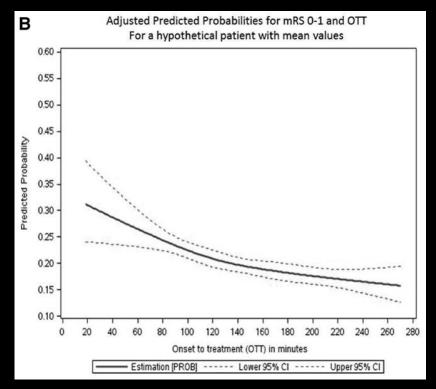
Target: Stroke Elite
 » DTN ≤ 60m in 75%
 » DTN ≤ 45m in 50%

Time Trend in the Proportion of Patients with DTN Times within 45 Minutes Pre-Target: Stroke and During Target: Stroke Phase I and II

Door to Needle Times with "Direct to CT" or "ED Pitstop" in Best Practice Hospitals

Stroke Center	Median Door to Needle Times
Helsinki, Finland	20 mins
Erlangen, Germany	25 mins
Wash U, St. Louis	39 mins

--Meretojoa et al, Neurology 2012--Korhmann et al, Int J Stroke 2011--Ford et al, Stroke 2012


UCLA Stroke Center

Stroke Treatment in the Golden Hour

- GWTG-Stroke
 - » 65,384 tPA patients
 - » Jan 2009 Sept 2013
 - >> 1456 hospitals
- Onset to treatment time \leq 60m
 - » 878 patients
 - » 1.3% of under 4.5h tPA cohort
 - » 15-60m vs 61-270m

Discharge to home	OR 1.25
Indep ambulation at d/c	OR 1.22
Nondisabled (mRS 0-1)	OR 1.72

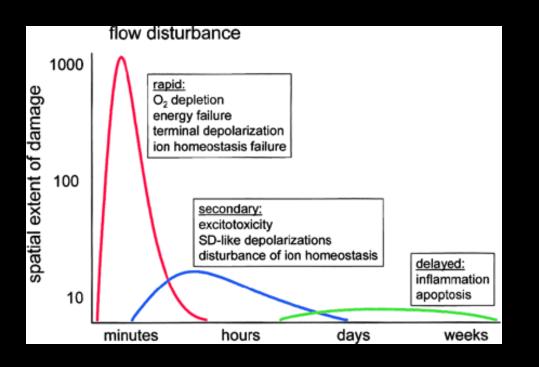
Shape of time-benefit curve

Mildly nonlinear for mRS 0-1 and d/c home More rapid decline first 100-170m

UCLA Stroke Center

--Kim JT et al. Circulation 2017

Stroke and the Golden Hour



- Narrow therapeutic time window
- Early intervention critical for stroke care
- Prehospital personnel
 - » 35-70% of stroke patients arrive by ambulance
 - >> Unique position: first medical professional to come in contact with stroke patient

Prehospital Stroke Trials of Paramedic Delivered Therapy

Trial	Intervention	Strategy	Design	Size	Status
FAST-MAG Pilot	Magnesium	NP	Historical controls	20	2004
Helsinki EMS	IV + SQ Insulin	Homeo- Stasis	Randomized open / hist cont	23	2011
Aarhus University	Remote perconditioning	NP	Randomized open label	443	2013
RIGHT *	Glyceryl trinitrate	BP/NP	Randomized open label	41	2013
PIL-FAST*	Lisinopril	BP	Randomized open label	14	2013
FAST-MAG Pivotal	Magnesium	NP	Randomized, blinded placebo	1700	2014
FAST-BP*	Glyceryl trinitrate	NP/BP/ CE	Dose escalation	45	Enrolling (California)
FRONTIER*	NA-1	NP	Randomized, 2B	500	Enrolling (Canada)
RIGHT-2*	Glyceryl trinitrate	NP/BP/ CE	Randomized, sham-controlled	850	Enrolling (Great Britain)

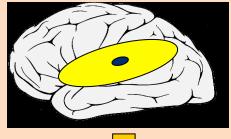
The Ischemic Cascade and Neuroprotective Interventions

- Modulators of Excitatory Amino Acids
- Modulators of Calcium Influx
- Metabolic Activators
- Anti-edema Agents
- Inhibitors of Leukocyte Adhesion
- Free Radical Scavengers and Anti-Oxidants
- Promotors of Membrane Repair
- Unknown or Other Mechanism(s)

Standard Care

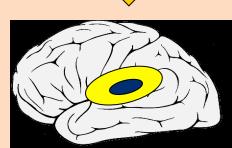
Neuroprotection


Collateral Enhancement Neuroprotection + Collateral 个



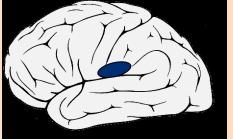
P

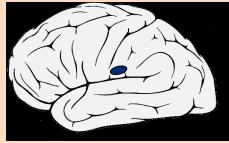
3 hours











Trials of Neuroprotective Agents for Stroke, 1955-2000

Neuroprotective agents tested	49
RCTs performed	114
Patients enrolled	21,445

Neuroprotective agents approved 0

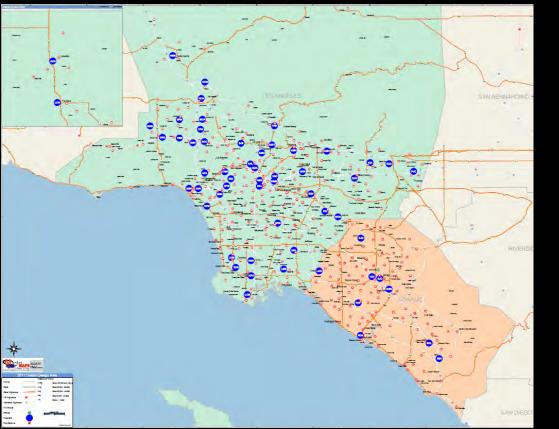
Time windows: 4-48 hours

-- Kidwell, Liebeskind, Starkman, Saver, Stroke 2001

Six Design Defects of Past Neuroprotective Trials

- Dose too low
 - » Side effects
- Enroll patients unlikely to respond to drug action
 White matter strokes for EAA blockade agents
- Enroll uninformative patients
 - >> Too mild at entry fare well with placebo
 - >> Too severe at entry fare poorly with active
- Sample sizes too small
- Outcome measures insensitive to modest but important benefits
- Late time of treatment start

The Field Administration of Stroke Therapy – Magnesium (FAST-MAG) Phase III Trial



NIH-NINDS

Field Administration of Stroke Treatment – Magnesium (FAST-MAG) Trial

- Placebo-controlled, double-blind, randomized
- Multicenter, single region
 » Los Angeles and Orange Counties
- 4 gm Mg field, 16 gm Mg maintenance x 24h
- 1700 patients, 1st patient Jan 2005
- Primary endpoint: Rankin Scale shift

FAST-MAG Trial Consortium

Performance Sites in Los Angeles and Orange Counties

- Los Angeles and Orange Counties
 - » Population 13.3 million
 - 40 EMS Provider Agencies
 - » 315 rescue ambulances
 - >> 2988 paramedics
 - 60 receiving hospitals
 - >> 952 physician-investigators
 - 715 Emergency Medicine (site Pls)
 210 Neurologist

 - 26 Nsurg/Intensiv/Hosp
- 95 CCC coordinators and research assistants

Entry Criteria

Inclusion

- Suspected stroke identified by the Los Angeles
 Prehospital Stroke Screen (LAPSS)
- Age 40-95, inclusive
- Last known well time within
 2h of treatment initiation
- Deficit present for ≥ 15 minutes

Exclusion

- Coma
- Rapidly improving neurologic deficit
- Pre-existing neurologic, psychiatric or advanced systemic disease that would confound outcome evaluations
- SBP<90 or>220
- Severe renal dysfunction
- Severe respiratory distress
- 2nd or 3rd degree heart block w/o pacemaker
- Major head trauma in last 24h
- Recent stroke within prior 30d,
- Patient/LAR unable to provide informed consent and EFIC not approved in catchment area

FAST-MAG Distinctive Methodologic Aspects

- Diagnosing stroke in the field
 » LAPSS
 - >> Physician cellphone review
- Rating pretreatment stroke severity
 - » LAMS
- Eliciting consent
 - >> Physician cellphone elicitation (99%)
 - » EFIC (1%)
- Prehospital treatment route
 - » Fixed lumen, rate-limiting IV infusion
- Randomization
 - >> Pre-encounter randomization

FAST-MAG

Explicit Informed Consent Enrollment Process*

Paramedics

- » Identify likely stroke patients using LAPSS
- » Call simultaneous ring enrolling line
 - English line 4 English speaking MDs
 - Spanish line 4 Spanish speaking MDs
 - First MD to answer proceeds
- » Give cellphone to patient/LAR
- » Give consent form to patient/LAR
 - Each ambulance has 8 consent forms
 - > 4 most common hospitals (4 English, 4 Spanish)
- Cellphone Enrolling Physicians
 - » Discuss trial with patient/LAR
 - While paramedic performs usual care
 - » After patient/LAR signs form, instructs paramedic to start study infusion
 - » Co-signs consent form after ED arrival

Neurologic Features

Characteristic	Placebo (n=843)	Magnesium (n=857)	Total (n=1700)	p value
Prestroke Function				
Residence (home)	97.6%	97.3%	97.5%	0.16
Prestroke Rankin	0 (0-0)	0 (0-0)	0 (0-0)	0.83
Final Diagnosis				
Cerebral Ischemia	72.8%	73.7%	73.3%	0.43
Intracranial Hemorrhage	22.8%	22.8%	22.8%	0.64
Mimic	4.4%	3.5%	3.9%	0.83
Presenting Severity				
LAMS (Prehospital)	3.7 (±1.3)	3.7 (±1.3)	3.7 (±1.3)	0.57
NIHSS (Hospital)	11.2 (±9.8)	11.5 (±9.0)	11.3 (±9.9)	0.41

Time Intervals

	Placebo (n=843)	Magnesium (n=857)	Total (n=1700)	p value
Onset* to Drug (mins)	46 (36-62)	45 (35-60)	45 (35-62)	0.24

*Onset = last known well time

Supported by NIH-NINDS

Time Intervals

	Placebo (n=843)	Magnesium (n=857)	Total (n=1700)	p value
Onset* to Drug (mins)	46 (36-62)	45 (35-60)	45 (35-62)	0.24
Onset to Drug (categorical)				
0-1 hours	73.2%	75.3%	74.3%	0.61
1-2 hours	25.7%	23.7%	24.7%	
>2 hours	1.1%	0.9%	1.0%	

*Onset = last known well time

Supported by NIH-NINDS

Time Intervals

	Placebo (n=843)	Magnesium (n=857)	Total (n=1700)	p value
Onset* to Drug (mins)	46 (36-62)	45 (35-60)	45 (35-62)	0.24
Onset to Drug (categorical)				
0-1 hours	73.2%	75.3%	74.3%	0.61
1-2 hours	25.7%	23.7%	24.7%	
>2 hours	1.1%	0.9%	1.0%	
On Scene to Drug	23 (19-28)	23 (18-27)	23 (18-27)	0.58
On Scene to Door**	33 (27-39)	32 (27-39)	33 (27-39)	0.91

*Onset = last known well time

**Historical comparator, pretrial LA scene to door times = 35 minutes (Stroke 2004;35:e106-108)

Supported by NIH-NINDS

Reperfusion Treatments After Arrival in FAST-MAG Cerebral Ischemia Patients (n=1235)

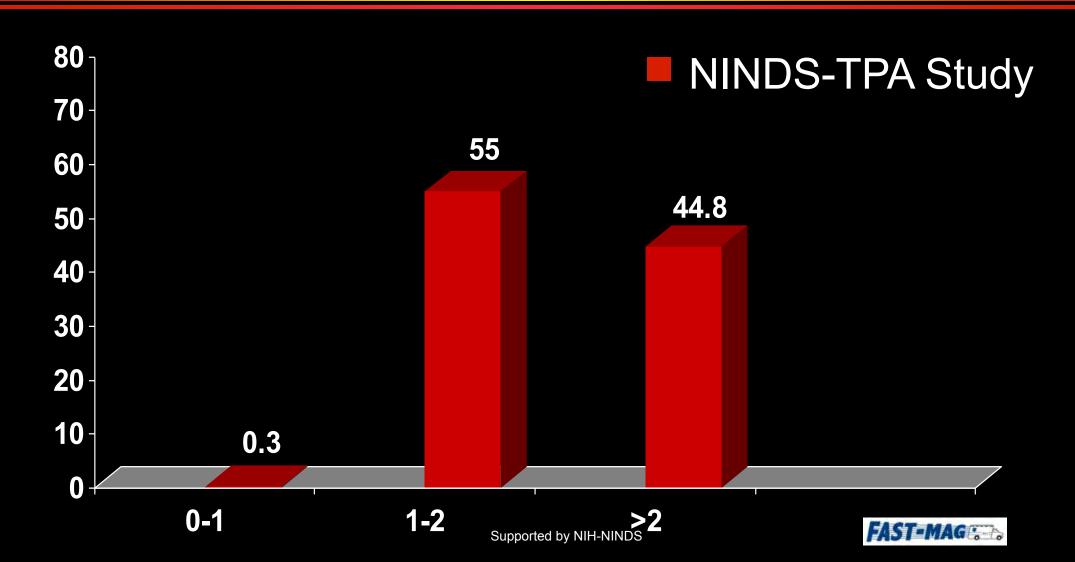
	Number of Patients	Percent
IV tPA	452	36.6%
Endovascular	76	6.1%

--Nguyen P, Sanossian N, et al, Submitted

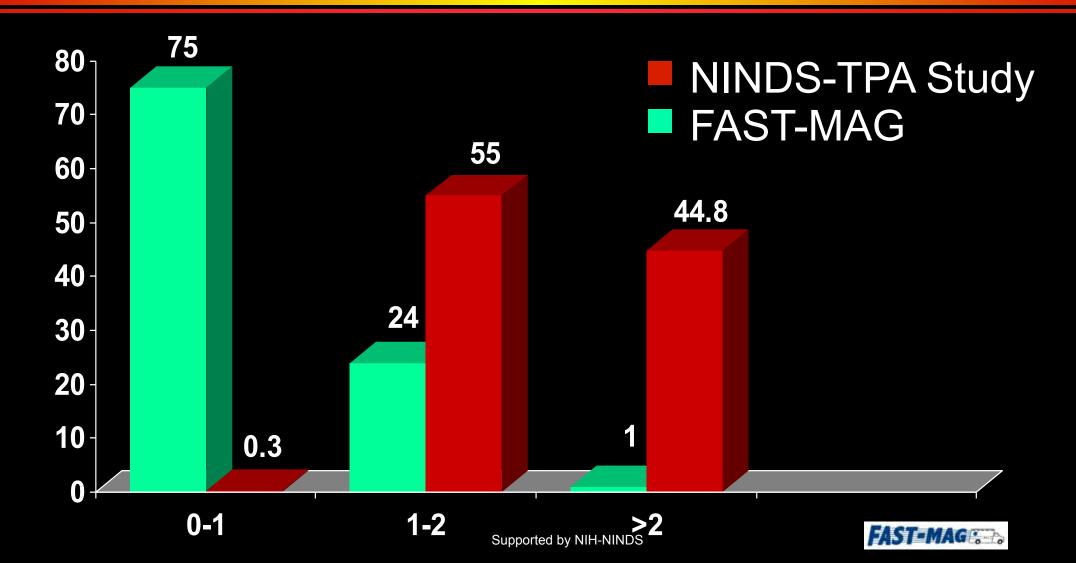
Supported by NIH-NINDS

Primary Endpoint: Global Disability at 3 Months (modified Rankin Scale)

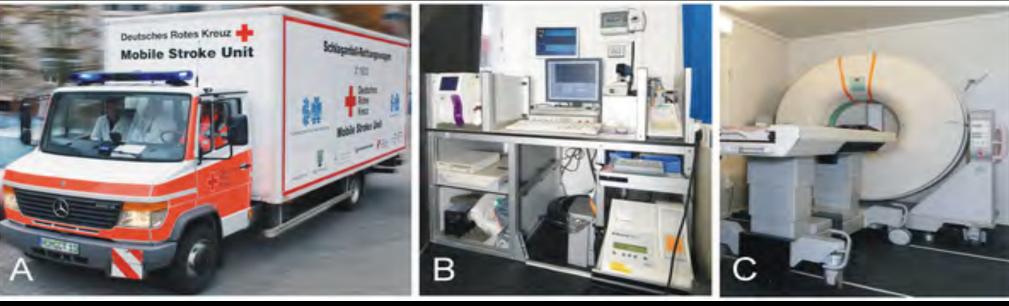
_		_					
Placebo	21,7	15,2	15,9	10,8	9,5	11,5	15,4
_							
Magnesium	20,9	15,6	15,9	12,6	10,4	9,3	15,3

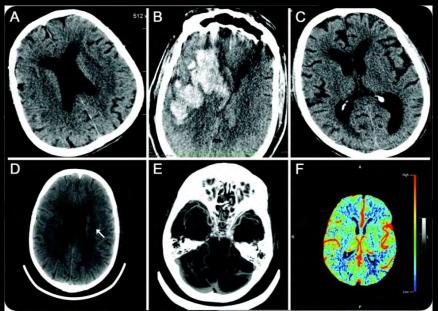

CMH test: p = 0.28 (Means 2.7 v 2.7) Discussion: Magnesium as a Neuroprotectant for Stroke

- FAST-MAG failed to confirm the primary hypothesis that prehospital magnesium sulfate is beneficial in likely stroke patients
- No increase in overall serious adverse events
- Potential reasons for neutral results
 - Slow magnesium passage across blood-brain barrier despite early systemic delivery
 - Magnesium as a single agent insufficient to suppress molecular ischemic cascade
 - Improving standard care reduced opportunity to demonstrate benefit
 - Interim analysis point estimates favorable for magnesium
 - Better supportive care at Primary Stroke Centers
 - TPA more often and faster


Discussion: Prehospital Delivery of Phase 3 RCT Stroke Therapy

- First prehospital stroke phase 3 randomized, controlled trial
- First acute (<3 hr) neuroprotective phase 3 trial</p>
- First stroke phase 3 trial of neuroprotection before recanalization therapy
- First prehospital RCT for any condition employing physician-elicited informed consent
- First "golden hour" (<1 hr) stroke phase 3 trial
 > Over 1250 treated within 60 mins of last known well time
- Methods and patient data available for therapies in pipeline


FAST-MAG vs NINDS-TPA Study Time to Treatment



FAST-MAG vs NINDS-TPA Study Time to Treatment

Mobile Stroke Units for Prehospital Thrombolysis

--Audebert et al, Berlin

--Walter et al, PLOS One, 2010, Homburg

In This Issue of JAMA

Neurology Edited by Roger N. Rosenberg, MD, and Jeffrey L. Saver, MD

Research

Ambulance-Based Thrombolysis in Acute Ischemic Stroke

Early thrombolysis with intravenous tissue plasminogen activator is associated with better outcomes in acute ischemic stroke. In a study randomized by week from May 1, 2011, to January 31, 2013, that involved 6182 German adults with suspected stroke, Ebinger and colleagues found that compared with conventional ambulance are, use of an ambulance equipped with a computed tomography scanner, laboratory capability, telemedicine connection, and trained stroke team resulted in decreased time to treatment without an increase in adverse events. In an Editorial, Grotta discusses progress in treatment of ischemic stroke.

Editorial 1615 Related Article 1632

Time to tPA Administration and Outcomes of Ischemic Stroke 1632

In an analysis of registry data from 1030 hospitals (71169 patients) participating in Target: Stroke, a national acute ischemic stroke care quality improvement program, Fonarow and colleagues assessed door-to-needle times for tissue plasminogen activator (tPA) administration and patient outcomes before and after program initiation. The authors report the Target:Stroke initiative was associated with improved timeliness of tPA administration and lower in-hospital mortality and intracranial hemorrhage.

G Editorial 1615 Related Article 1622 Author Video Interview jama.com

Effect of Acetazolamide on Vision Function in IIH

Acetazolamide is commonly used to treat idiopathic intracranial hypertension (IIH) despite insufficient evidence supporting its use. In a randomized study that enrolled 165 patients with IIH and mild vision loss, Wall and colleagues found that 6 months' treatment with acetazolamide and a low-sodium weight reduction diet, compared with diet alone, resulted in modest improvement in visual field function. In an Editorial, Horton discusses beneficial effects of acetazolamide in IIH.

Editorial 1618

Lorazepam vs Diazepam for Pediatric Status Epilepticus 1652 Diazepam is approved for the treatment of status epilepticus in children. However, some data suggest lorazepam may be more effective or safer. In a randomized rial involving 273 patients aged 3 months to 18 years who presented to academic pediatric emergency departments with convulsive status epilepticus, Chamberlain and colleagues found that treatment with lorazepam did not result in improved efficacy or safety compared with diazepam. Opinion Viewpoint 1607 How Neurologists Can Choose

April 23/30, 2014

Volume 311, Number 16 Pages 1579+1704

(Even More) Wisely: Prioritizing Waste Reduction Targets and Identifying Gaps in Knowledge BC Callaghan and Coauthors 1609 Global Opportunities and Challenges for Clinical Neuroscience

GL Birbeck and Coauthors 1611 Neurology at a Crossroads:

Opportunities and Challenges TA Pedley A Piece of My Mind

1613 Decisions H Lee Editorial

1622

1641

1615 tPA for Stroke: Important Progress in Achieving Faster Treatment JC Grotta

1618 Acetazolamide for Pseudotumor Cerebri: Evidence From the NORDIC Trial JC Horton 1620 Advancing Neurotherapeutics in the 21st Century

RN Rosenberg and JL Saver

LETTERS Research Letter

1689 Testing the Presumption of Consent to Emergency Treatment for Acute Ischemic Stroke W Chiong and Coauthors Comment & Response

1691 Medical Communication Companies and Industry Grants 1693 Strategies to Overcome Medication Nonadherence 1694 Correction

Instructions for Authors jama.com/public /instructionsforauthors.aspx

Editor in Chief OF CONTINUOUS Howard Bauchner, MD PUBLICATION

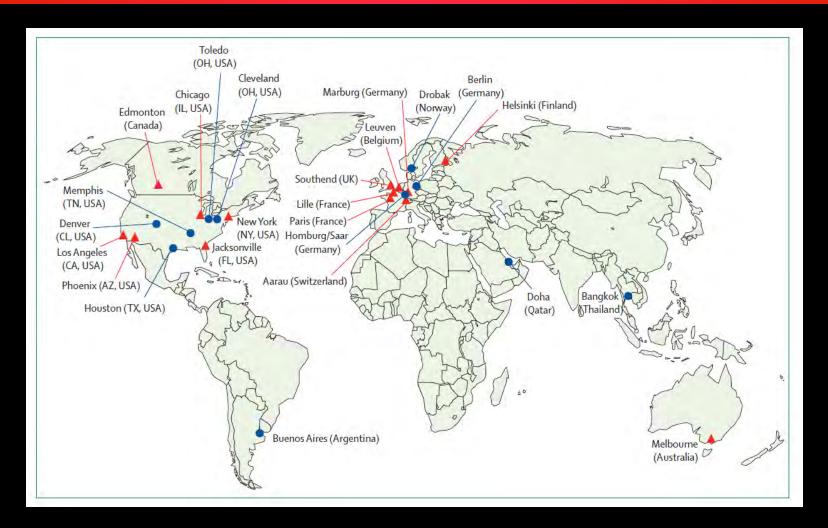
Research

Original Investigation

Effect of the Use of Ambulance-Based Thrombolysis on Time to Thrombolysis in Acute Ischemic Stroke A Randomized Clinical Trial

Martin Ebinger, MD; Benjamin Winter, MD; Matthias Wendt, MD; Joachim E. Weber, MD; Carolin Waldschmidt, MD; Michal Rozanski, MD; Alexander Kunz, MD; Peter Koch, MD; Philipp A. Kellner, MD; Daniel Gierhake, MD; Kersten Villringer, MD; Jochen B. Fiebach, MD; Ulrike Grittner, PhD; Andreas Hartmann, MD; Bruno-Marcel Mackert, MD; Matthias Endres, MD; Heinrich J. Audebert, MD; for the STEMO Consortium

--JAMA, April 2014


PHANTOM-S Trial TPA Frequency and Speed

	CT Ambulance Patients	p value	CT Ambulance Weeks	p value	Control Weeks
Ν	1804		3213		2969
Pct of AIS	32.6%	<0.001	28.9%	<0.001	21.1%
DTN Hosp (min)					42
Alarm to Hosp (min)	85	<0.001	67	<0.001	35
Alarm to Imaging	38	<0.001	44	<0.001	52
Imaging to TPA	14	<0.001	17	<0.001	24
*Alarm to TPA	52	<0.001	61	<0.001	76
Onset to TPA	103	<0.001	110	0.003	119
Onset to TPA <90m	58%	<0.001	48%	0.02	37%

*Primary Endpoint

No differences in efficacy or safety outcomes (not powered to detect)

Growing Worldwide Use of Mobile Stroke Units

UCLA Stroke Center

--Fassbender, Grotta, Walter, Grunwald, Ragoschke-Schumm, Saver. Lancet Neurol 2017

BEnefits of Stroke Treatment Delivered Using a Mobile Stroke Unit (BEST-MSU) Trial

- Cluster-control RCT
 - >> 5 EMS Regions USA
 - >> 1 week on, 1 week off
 - >> Patients
 - 6000 assessed
 - 1200 enrolled> 700 fully tPA eligible
- Key entry criteria
 - » LKW within 4.5h prior to ambulance evaluation
 - » tPA eligible prior to CT/labs
- Outcome
 - » Utility-weighted mRS at 90d
- Timeline
 - » 2014-2021

Trials of Novel Therapies Using Mobile Stroke Unit as Platform

Intracerebral hemorrhage » Anticoag reversal **PRESTO-Reverse B-SPATIAL** >> Hemostatic therapy Aust transexamic acid RCT >> BP control HEME-MSU Acute cerebral ischemia » Neuroprotection TEMPO-EMS

1837 – First patented US ambulance in US

1889– Patented ambulance with built-in stretcher

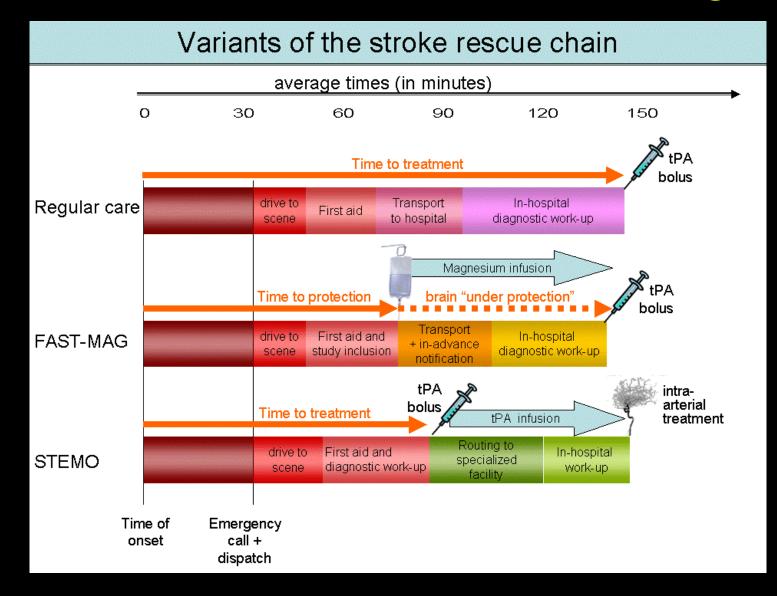
1914 – First x-ray ambulance – Madame Curie

2011 – First CT ambulance - Homburg

--Modifed from Nour, Brain Attack 2017

Future Technology / Trials?

Helicopter MSU


Mobile Neurointervention Suite

Varieties of Treatment Strategies

--Audebert, Lees, Starkman, Saver, Endres, Neurology 2013

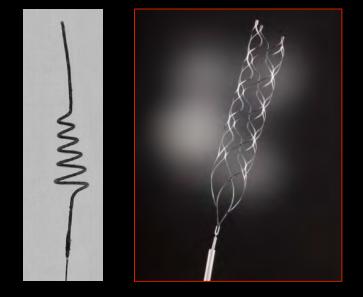
Catheter-Based Reperfusion Therapies

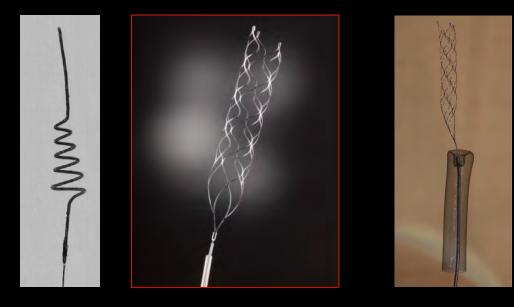


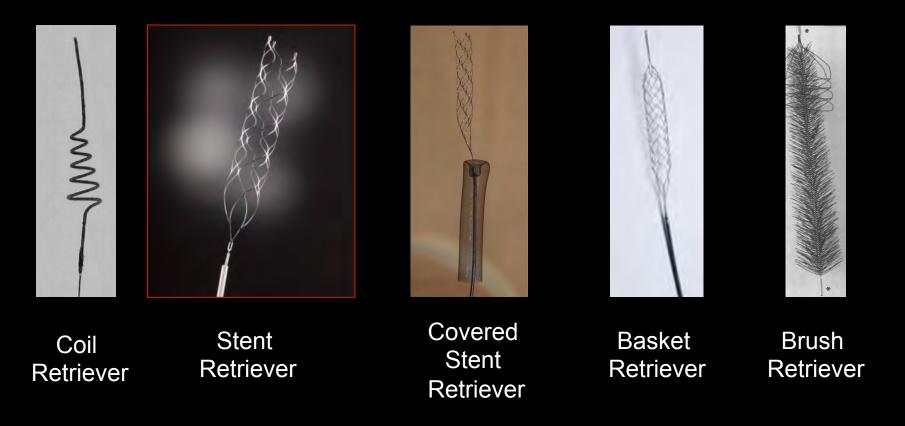
figure 4: catheter introduced at the groin

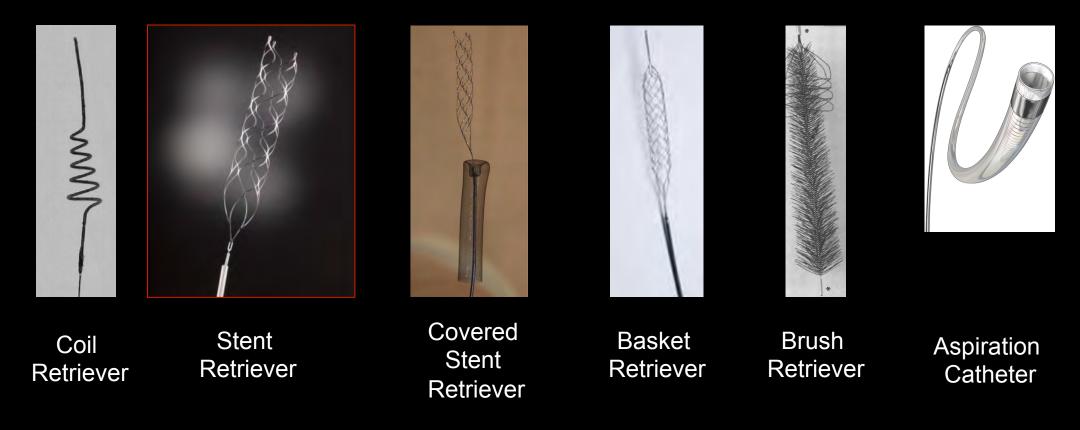
Historical Development of Endovascular Technologies for Acute Recanalization

Technology	First Human Studies
IA microcatheter lysis	1988 (1999)
IA angioplasty	1994
IA aspiration thrombectomy	2001 (2009)
IA ultrasound sonothrombolysis	2003
IA implanted stents	2003
IA laser clot destruction	2004
IA Archimedes screw	2004
IA coil retrievers	2004 (2004)
IA basket/brush retrievers	2006
IA stent retrievers	2010 (2010)




Coil Retriever




Coil Retriever Stent Retriever Covered Stent Retriever

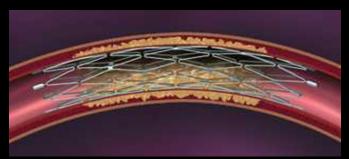
MM			
----	--	--	--

Coil Retriever Stent Retriever Covered Stent Retriever

Basket Retriever

Acute Mechanical Recanalization Strategy Depends on Target Occlusion Composition

Embolus

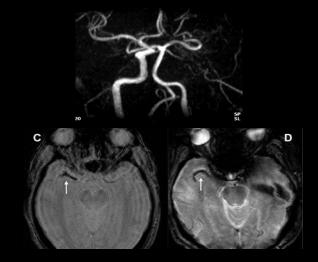

- Relatively normal recipient artery
- Strategy: remove the thrombus
 - Retrievers
 - Aspirators
 - +/- Lytics

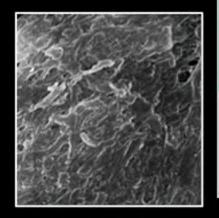
UCLA Stroke Center

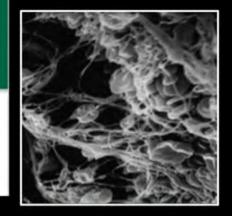
In Situ Atherothrombosis

- Substantial local atherosclerotic plaque
- Strategy: Crack the plaque
 - Angioplasty
 - Stents
 - +/- Lytics

Determinants of Thrombectomy Success


- Clot burden
- Clot composition
- Clot tensile properties
- Tortuosity of feeding arteries
- Target artery size
- Recipient artery branching curvature





Should clot composition affect choice of endovascular therapy?

Brijesh P. Mehra, MD ABSTRACT Raul G. Nogueita, MD Epiclowani d

Consequendence & reprint requests to Dr. Nogarira: sual garogueira@remory.edu Endovascular therapy has become a promising alternative for patients who are ineligible for IV thrombolysis or for whom it has failed. Greater knowledge about the composition of thromboembolic material underlying the vascular occlusion in stroke patients may provide the means for improving existing endovascular therapies and developing new treatment strategies. The objective of this article is to provide a review of clinical and experimental animal studies on the histology, imaging correlation, and ultrastructure of thromboemboli retrieved during acute ischemic stroke. Neurology[®] 2012;79 (Suppl 1):563–567

Organized, Inelastic, Hard, Fibrin-Rich Clot

Aspiration:

+ Cohesive = lower risk of clot stripping/ fragmentation during aspiration

Stentriever:

 Inelastic so harder to be incorporated into the stent cells

+ Push+Fluff Technique and/or larger or hybrid cells

Fresh, Elastic, Soft, RBC-Rich Clot

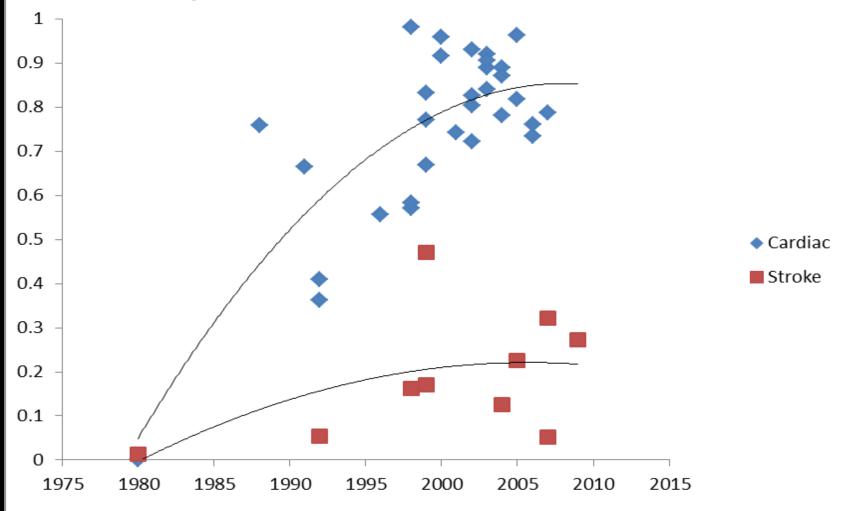
Stentriever:

+ Elastic = easier to be incorporated into the stent cells

Aspiration:

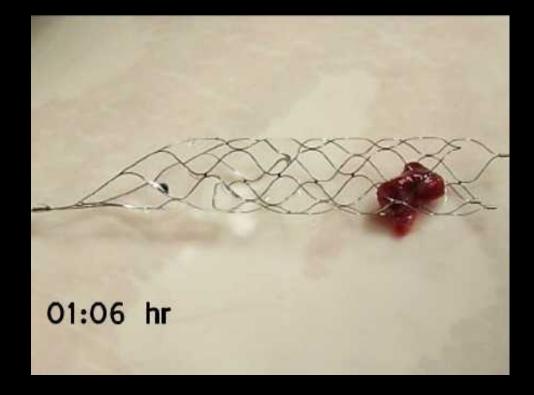
 Friable = higher risk of clot stripping/ fragmentation during aspiration

+ Larger ID catheters closely matching vessel diameter UCLA – MCA Occlusion 30-Year-Old Female – Baseline NIHSS 24 Symptom Onset to Final Angiogram – 5:37



NIHSS24 hours1mRS5 days post030 days post090 day post0

Complete Recanalization Heart vs. Brain

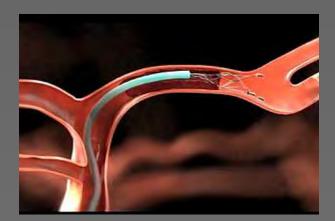


--Patel + Saver, Submitted

The New Wave in Endovascular Recanalization Devices: Retrievable Stents

Advantages

- » Immediate repefusion
- » Potential clot retrieval
- » Potential longterm stenting
- Devices
 - Solitaire stent
 - Ev3
 - SWIFT Trial
 - >> Mindframe stent
 - Mindframe, Inc
 - PRIISM Trial
 - >> ReStore stent
 - Reverse Medical
 - >> Trevo stent
 - Concentric
 - TREVO Trial

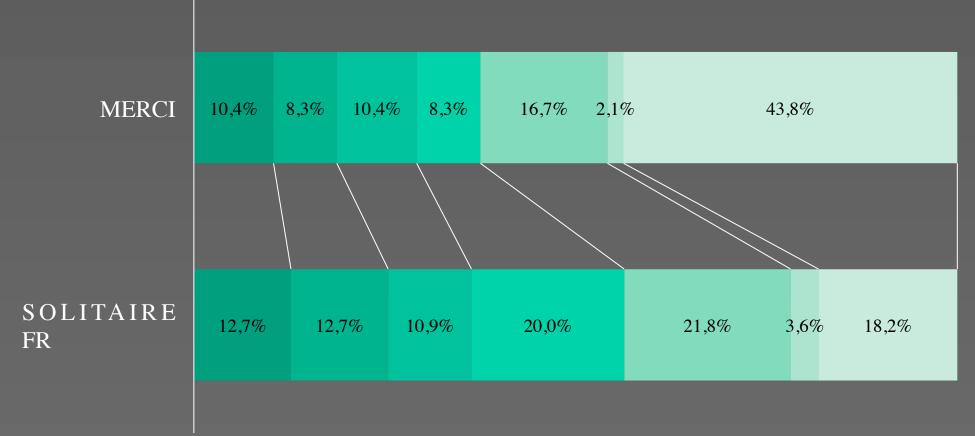

--Henkes et al, Stroke 2009, p410

Solitaire flow restoration device versus the Merci Retriever in @ patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial

Jeffrey L Saver, Reza Jahan, Elad I Levy, Tudor G Jovin, Blaise Baxter, Raul G Nogueira, Wayne Oark, Ronald Budzik, Osama O Zaidat, for the SWIFT Trialists

JL Saver, R Jahan, E Levy, T G Jovin, B Baxter, R Nogueira, W Clark, R Budzik, OO Zaidat, for the SWIFT Trialists

Primary Trial Endpoint


Outcomes Among Randomized Patients	Randomized Solitaire FR N=58	Randomized Merci N=55	Non- inferiority P value ¹	Superiority P value ¹
Successful recanalization without SICH ² (Core Lab)	60.7% (34/56)	24.1% (13/54)	<0.0001	0.0001
Successful recanalization study device (Core Lab)	68.5% (37/54)	30.2% (16/53)	< 0.0001	0.0001
Successful recanalization study device (Site Assessed)	83.3% (45/54)	48.1% (26/54)	<0.0001	0.0002
Use of rescue therapy	20.7% (12/58)	43.6% (24/55)	< 0.0001	0.015
End of procedure successful recanalization (Site)	88.9% (48/54)	67.3% (37/55)	< 0.0001	0.010
End of procedure successful recanalization (Core Lab)	80.4% (45/56)	57.4% (31/54)	< 0.0001	0.013

1. Noninferiority by Wald's method, superiority by Fisher's Exact test

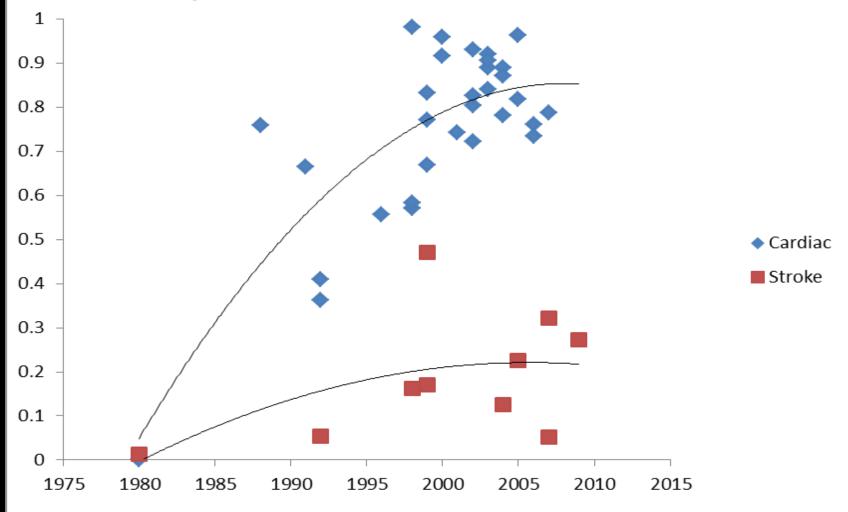
2. Symptomatic Intracranial Hemorrhage - Any PH1, PH2, RIH, SAH, or IVH associated with a decline in NIHSS \geq 4 within 24hrs.

<u>Global Disability at 90 Days</u> (Modified Rankin Score)

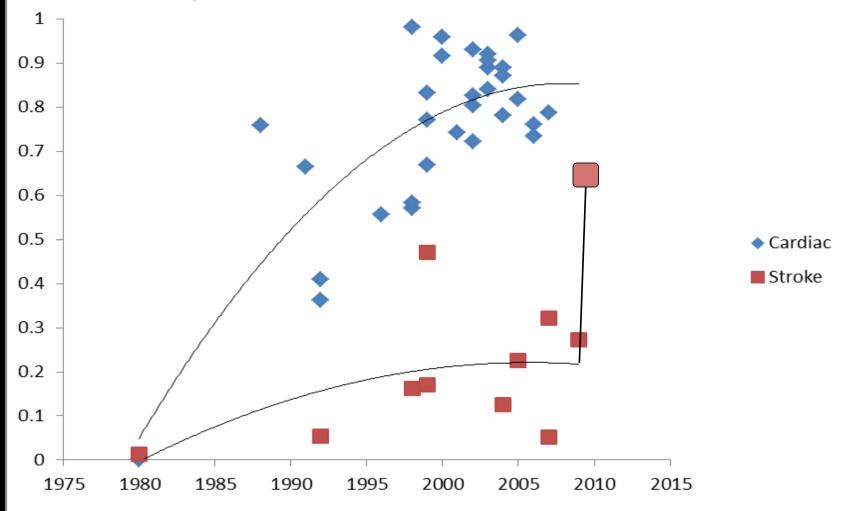
•CMH, p = 0.04

Hemorrhagic Transformation Outcomes

Outcomes Among Randomized Patients	Randomized Solitaire FR N=58	Randomized Merci N=55	Non- inferiority P value ¹	Superiority P value ¹
SICH	1.7% (1/58)	10.9% (6/55)	<0.0001	0.057
All ICH	17.2% (10/58)	38.2% (21/55)	0.0001	0.020
1. Fisher's Exact				

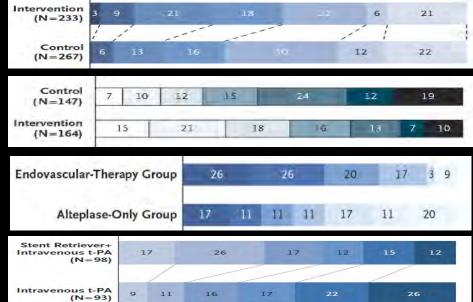

TREVO 2 Trial

Rankin Shift



0,00%10,00%20,00%20,00%40,00%50,00%60,00%70,00%80,00%20,00%

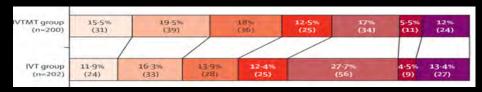
Complete Recanalization Heart vs. Brain

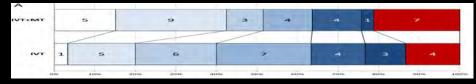

Complete Recanalization Heart vs. Brain

Era of Highly Effective Reperfusion Therapy

EXTEND-

SWIFT PRIME





Evidence of Benefit: Independence (mRS≤2) at 3 Months

Trial	ERT+MedRx	MedRx	OR	P value
MR CLEAN	32.6%	19.1%	2.05	0.0007
ESCAPE	53.0%	29.3%	2.73	0.00003
EXTEND-IA	71.4%	40.0%	3.75	0.009
SWIFT PRIME	60.2%	35.5%	2.75	0.0008
REVASCAT	43.7%	28.2%	1.98	0.021
All (weighted avg)	46.1%	26.4%	2.39	<0.0000001

Odds that ERT is beneficial are more than 100,000,000 to 1

Features of Second Generation Embolectomy Trials

Trial	Current N	Planned Max N	Interventio n	CTA/ MRA	Time	TPA	Imaging	Status
MR CLEAN	500	500	Variable (97% SR)	+	6 hr	Y or Inel	<1/3 MCA	Positive
ESCAPE	316	500	Variable (86% SR)	+	12 hr	Y or Inel	Collat < 50%	Positive
EXTEND IA	70	100	Solitaire	+	6 hr	Y	RAPID Mismatch	Positive
SWIFT PRIME	196	833	Solitaire	+	6 hr	Y	A≥6 RAPID	Positive
REVASCAT	206	690	Solitaire	+	8 hr	Inel or Failed	A ≥ 6/7	Positive
THRACE	~450	480	Variable	+	R 4h	Y		Positive
THERAPY	108	692	Penumbra 3D	HVS≥8 mm	(6 hr)	Y	< 1/3 MCA	Trend Positive
PISTE	~75	800	Variable	+	6 hr	Υ	CT hypo	Enrolling

Features of Second Generation Embolectomy Trials

Trial	Current N	Planned Max N	Interventio n	CTA/ MRA	Time	TPA	Imaging	Status
MR CLEAN	500	500	Variable (97% SR)	+	6 hr	Y or Inel	<1/3 MCA	Positive
ESCAPE	316	500	Variable (86% SR)	+	12 hr	Y or Inel	Collat < 50%	Positive
EXTEND IA	70	100	Solitaire	+	6 hr	Y	RAPID Mismatch	Positive
SWIFT PRIME	196	833	Solitaire	+	6 hr	Y	A ≥ 6 RAPID	Positive
REVASCAT	206	690	Solitaire	+	8 hr	Inel or Failed	A ≥ 6/7	Positive
THRACE	~450	480	Variable	+	R 4h	Y		Positive
THERAPY	108	692	Penumbra 3D	HVS≥8 mm	(6 hr)	Y	< 1/3 MCA	Trend Positive
PISTE	~75	800	Variable	+	6 hr	Y	CT hypo	Enrolling

AHA/ASA Guideline

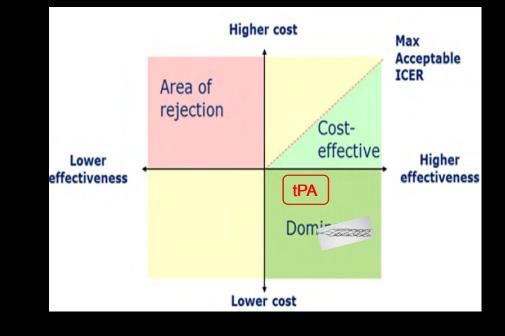
2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment

Endovascular therapy if patients meet all the following criteria

- Prestroke mRS score 0-1
- Received IV tPA (Ia) or tPA-ineligible (IIa)
- ICA or M1 MCA occlusion
- Age ≥ 18 yo
- NIHSS ≥ 6
- ASPECTS ≥ 6
- Treatment start (puncture) within 6h of onset

NNTs for Cerebral and Cardiac Ischemia Binary Outcomes

Thrombectomy for AIS (vs Lysis) Independence


IV Lytics for AIS (vs ASA) Nondisability (10)

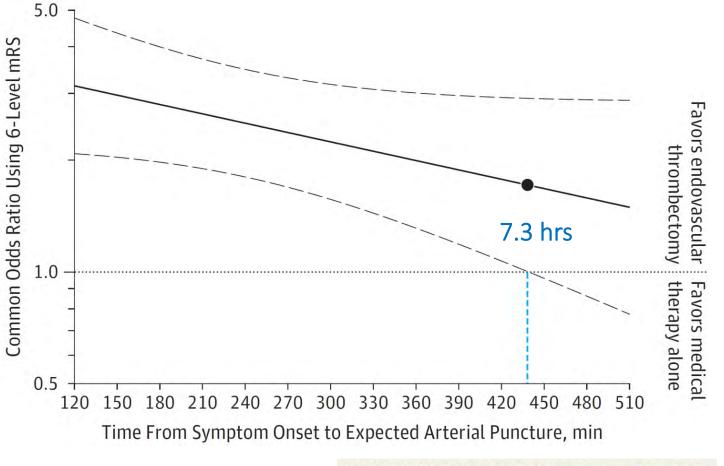
PCI for STEMI (vs Lysis) Mortality (29)

UCLA Stroke Center -- Huyn et al, Circulation 2009 / Emberson et al, Lancet 2014 / Saver et al, NEJM 2015

Cost Effectiveness US Payer Perspective - Lifetime

IV tPA vs supportive » QALY Gain • 0.39 yrs > Healthcare Costs Reduced \$25,000 ET+IV TPA vs IV tPA » QALY Gain 1.74yrs >> Healthcare Costs Reduced \$23,203

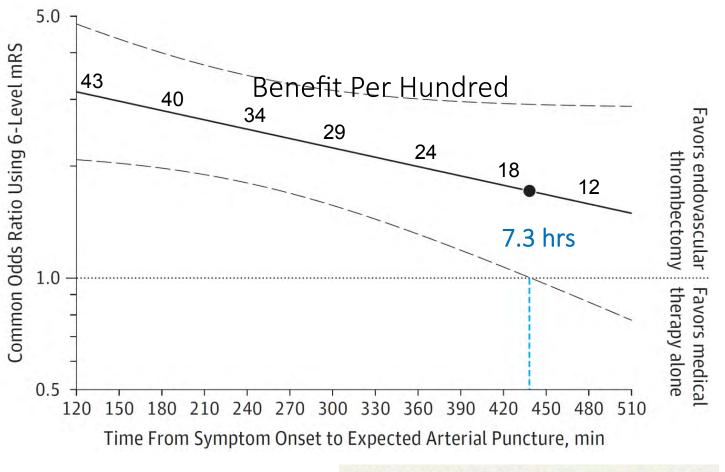
--Boudreau et al, Stroke 2014 --Shireman et al, Stroke 2017


Contribution of Intracranial Occlusions to Outcome in 643 Consecutive Ischemic Stroke and TIA Patients

--Reanalysis of Smith et al, Stroke 2009

Occlusion	Proportion of All AIS and TIA	Proportion of Dependent or Worse (mRS 3-6) AIS or TIA	Proportion of Fatal AIS or TIA
LVO	44%	62%	72%
No LVO	56%	38%	28%

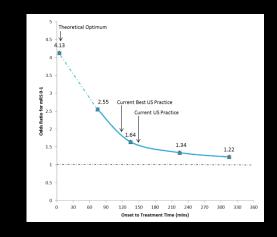
Time from Onset to Expected Puncture Odds of Reduced Disability with EVT vs Medical

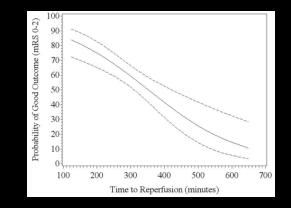

HERMES
 Collaboration

JAMA. 2016;316(12):1279-1288. doi:10.1001/jama.2016.13647

Time from Onset to Expected Puncture Odds of Reduced Disability with EVT vs Medical

JAMA. 2016;316(12):1279-1288. doi:10.1001/jama.2016.13647


HERMES


Collaboration

Minutes Matter

IV TPA

- » Every 8 minute delay causes 1 fewer of 100 treated patients to benefit in improved ambulation
- IA Neurothrombectomy
 - >> Every 4 minute delay causes 1 fewer of 100 reperfused patients to benefit in reduced final disability

--Saver, Stroke 2013; Saver et al, JAMA 2013; Sheth et al, Ann Neurol 2015; Saver et al, JAMA 2016

Minutes Matter

IV TPA

- >> Every 8 minute delay causes 1 fewer of 100 treated patients to benefit in improved ambulation
- IA Neurothrombectomy
 - » Every 4 minute delay causes 1 fewer of 100 reperfused patients to benefit in reduced final disability

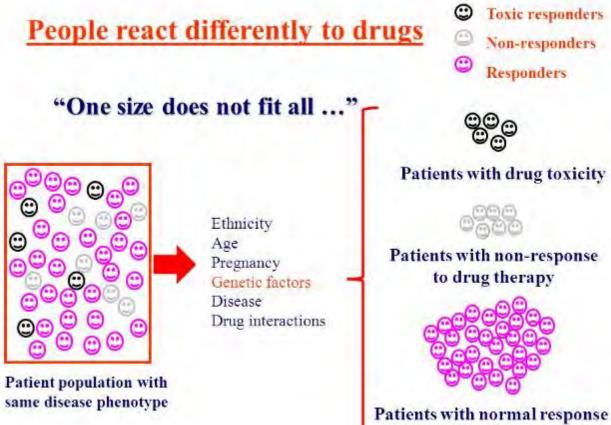
1 worse outcome every 4 minutes

Multisociety Consensus Quality Improvement Guidelines for Intraarterial Catheter-directed Treatment of Acute Ischemic Stroke, from the American Society of Neuroradiology, Canadian Interventional Radiology Association, Cardiovascular and Interventional Radiological Society of Europe, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, European Society of Minimally Invasive Neurological Therapy, and Society of Vascular and Interventional Neurology

David Sacks, MD, Carl M. Black, MD, Christophe Cognard, MD, John J. Connors III, MD, Donald Frei, MD, Rishi Gupta, MD, Tudor G. Jovin, MD, Bryan Kluck, MD, Philip M. Meyers, MD, Kieran J. Murphy, MD, Stephen Ramee, MD, Daniel A. Rüfenacht, MD, M.J. Bernadette Stallmeyer, MD, PhD, and Dierk Vorwerk, MD

Endovascular Time Targets

Time Metric	Multi-Society Guideline 2013
Door to Puncture	120 min
Picture to Puncture	95 min
Puncture to 1 st pass	45 min
Door to Revasc	210 min (3h 30m)

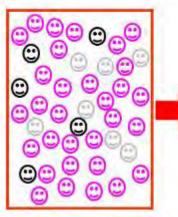

Endovascular Time Targets

Time Metric	Multi-Society Guideline 2013	SWIFT PRIME		
Door to Puncture	120 min	90 min		
Picture to Puncture	95 min	57 min		
Puncture to 1 st pass	45 min	24 min		
Door to Revasc	210 min (3h 30m)	139 min (2h 19m)		

Endovascular Time Targets

Time Metric	Multi-Society Guideline 2013	SWIFT PRIME	SNIS Guideline 2015 "Ideal"
Door to Puncture	120 min	90 min	60 min
Picture to Puncture	95 min	57 min	30 min
Puncture to 1 st pass	45 min	24 min	
Door to Revasc	210 min (3h 30m)	139 min (2h 19m)	90 min (1h 30m)

Mapping the Responder Population



to drug therapy

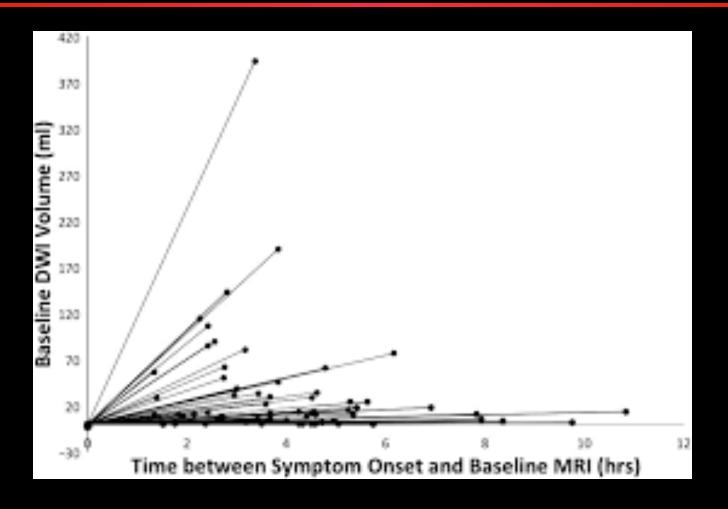
Mapping the Responder Population

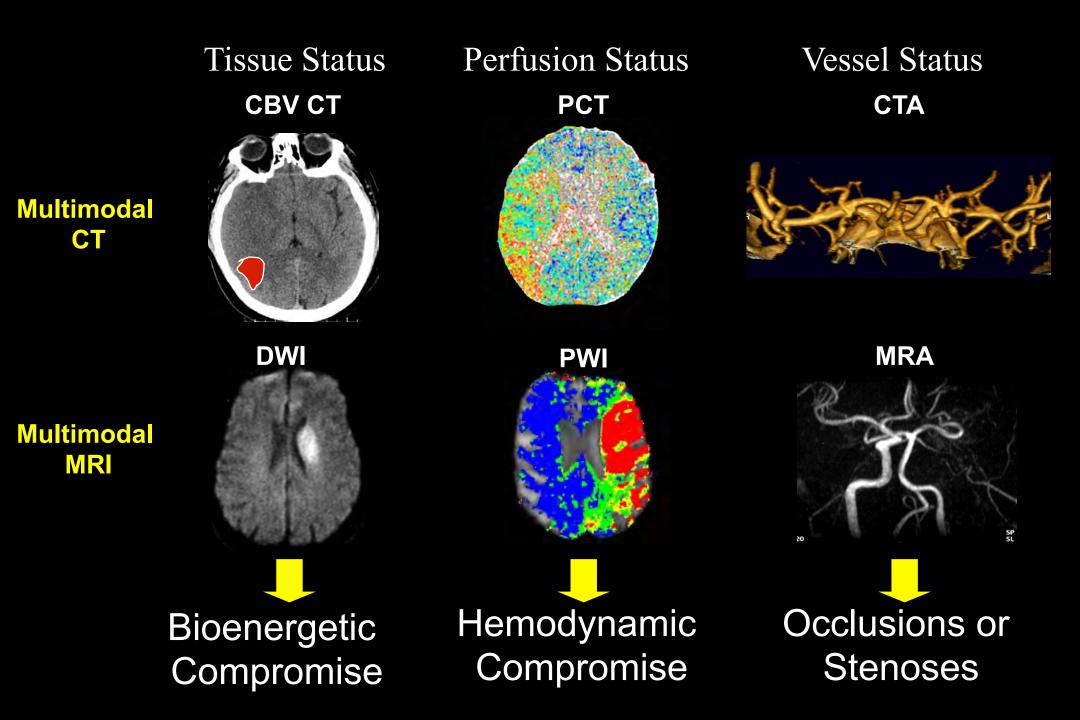
People react differently to drugs

"One size does not fit all ..."

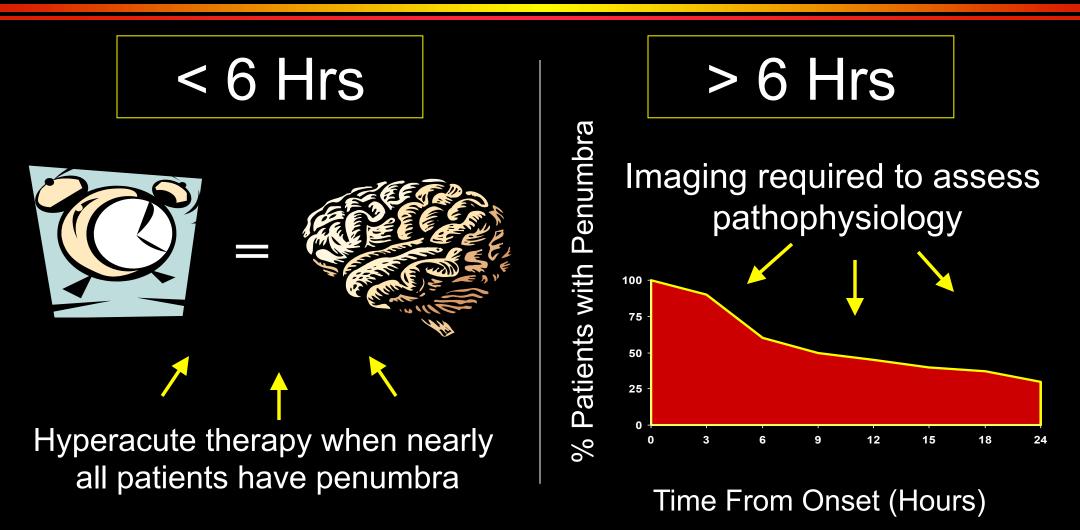
Patient population with same disease phenotype Ethnicity Age Pregnancy Genetic factors Disease Drug interactions Toxic responders
 Non-responders
 Responders

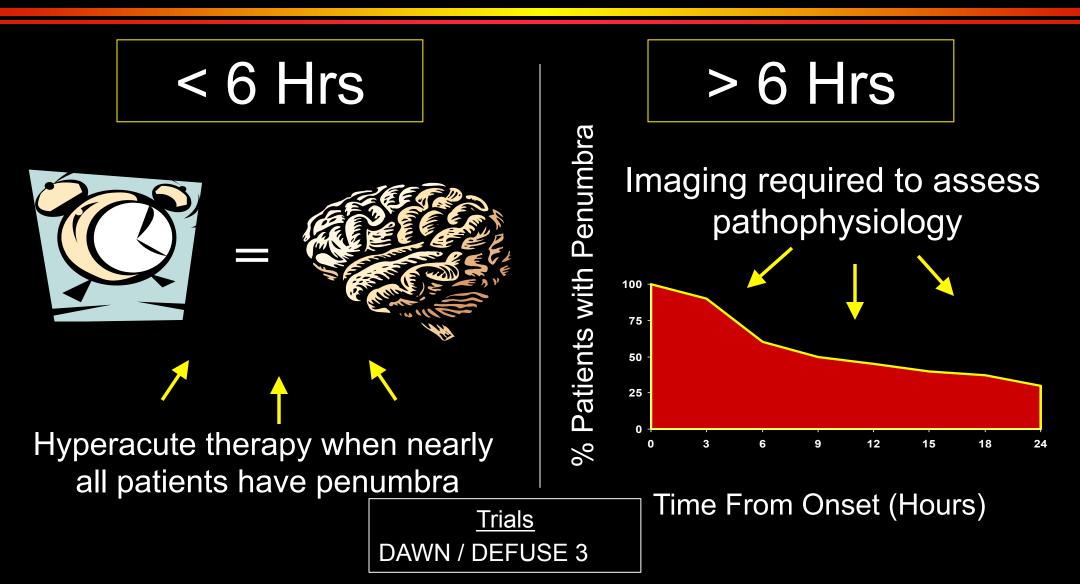
Patients with drug toxicity


Patients with non-response to drug therapy


Patients with normal response to drug therapy

- More arteries
 - MVOs (M2, etc)
 - BA/VA
- Mild deficits
- Large cores
- Late-presenters


Fast and Slow Progressors Collateral Variability


--Wheeler et al, Int J Stroke 2015

Strategies to Identify LVO Patients with Salvageable Ischemic Penumbra

Strategies to Identify LVO Patients with Salvageable Ischemic Penumbra

Potential Populations for Thrombectomy: Example of Time

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									

Potential Populations for Thrombectomy: Examples of Time and Penumbra

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									
>200%									
150-199%									
100-149%									
50-99%									
20-49%									

Potential Populations for Thrombectomy: Examples of Time and Penumbra

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									
>200%									
150-199%	\sim								
100-149%									
50-99%									
20-49%									

Trial Design Options for Expanding Eligible Patients

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed						-			
>200%									
150-199%									
100-149%									
50-99%									
20-49%									

Older approaches

>> Incremental expansion

- From "sweet spot" out
- Series of trials or adaptive expansion
- » Mega-trial
 - Wide entry criteria with enroll all or uncertainty principle
 - Sort it out in subgroup analysis
- Newer approach
 - >> Adaptive exploration

<u>D</u>WI or CTP <u>A</u>ssessment with Clinical Mismatch in the Triage of <u>W</u>ake-Up and Late Presenting Strokes Undergoing <u>N</u>eurointervention

Entry criteria

- » 6-24h after onset
- >> Clinical-imaging mismatch on DWI MRI or CTP-rCBF
 - Age < 80 yo
 - » NIHSS≥10, 0-30 cc core
 - » NIHSS≥20, 31-50 cc core
 - Age ≥ 80 yo
 - » NIHSS≥10, 0-20 cc core

Sample size

- » Adaptive Bayesian design
 - Up to 500 patients
 - Interim analyses at 150 and every 50 thereafter

<u>D</u>WI or CTP <u>Assessment with Clinical Mismatch</u> in the Triage of <u>Wake-Up</u> and Late Presenting Strokes Undergoing <u>N</u>eurointervention

Entry criteria

- » 6-24h after onset
- » Clinical-imaging mismatch on DWI MRI or CTP-rCBF
 - Age < 80 yo</p>
 - » NIHSS≥10, 0-30 cc core
 - » NIHSS≥20, 31-50 cc core
 - Age ≥ 80 yo
 - » NIHSS≥10, 0-20 cc core

Sample size

- » Adaptive Bayesian design
 - Up to 500 patients
 - Interim analyses at 150 and every 50 thereafter

Feb 28, 2017

DAWN Trial: Breaking News

Dear DAWN Investigators:

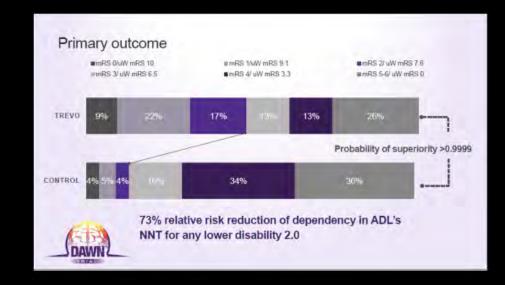
Today, the DAWN DSMB has performed an interim analysis of the first 200 enrolled subjects in DAWN. It is with great excitement that we announce that based on crossing of pre-specified probability thresholds for efficacy, the DSMB recommended trial enrollment to be stopped.

<u>D</u>WI or CTP <u>Assessment with Clinical Mismatch</u> in the Triage of <u>Wake-Up</u> and Late Presenting Strokes Undergoing <u>N</u>eurointervention

Entry criteria

- » 6-24h after onset
- » Clinical-imaging mismatch on DWI MRI or CTP-rCBF
 - Age < 80 yo</p>
 - » NIHSS≥10, 0-30 cc core
 - » NIHSS≥20, 31-50 cc core
 - Age ≥ 80 yo
 - » NIHSS≥10, 0-20 cc core

Sample size

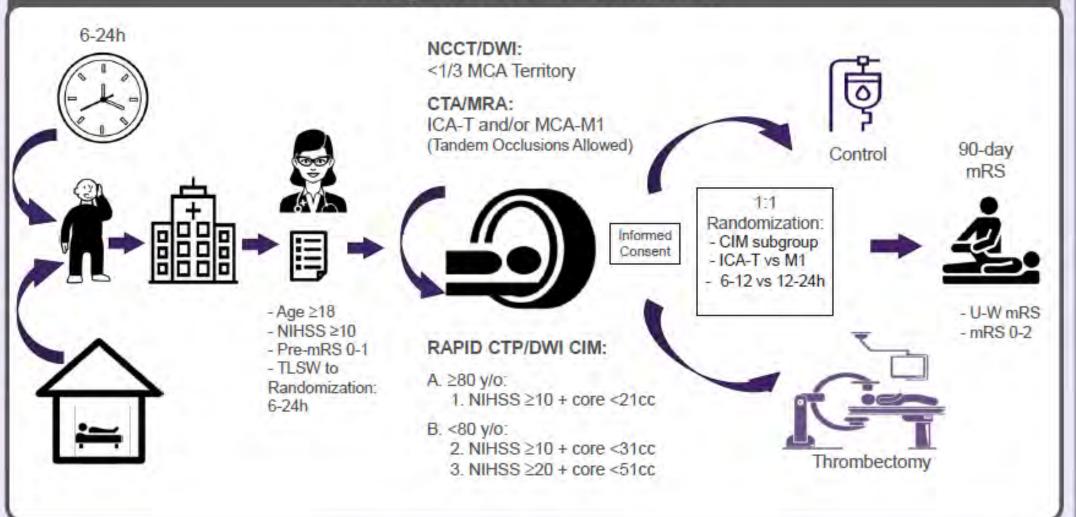

- » Adaptive Bayesian design
 - Up to 500 patients
 - Interim analyses at 150 and every 50 thereafter

Feb 28, 2017

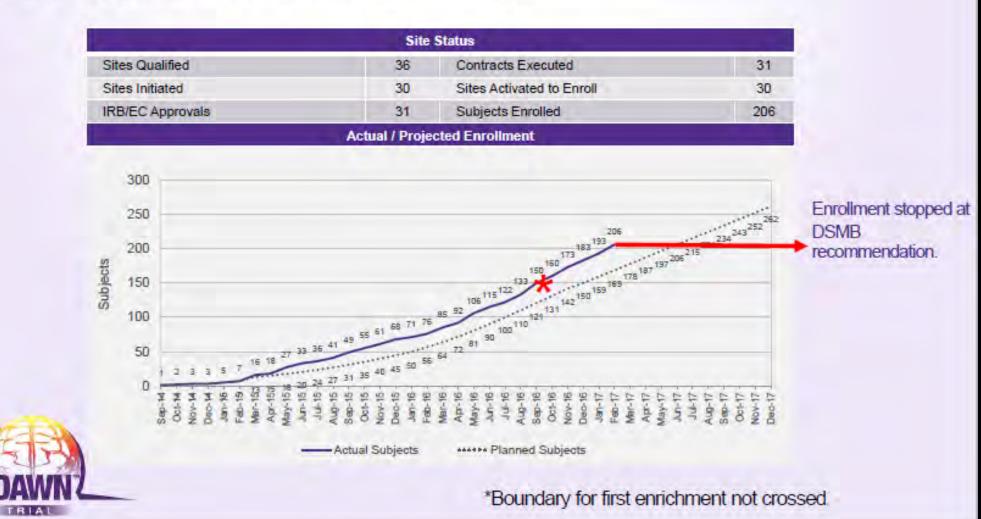
DAWN Trial: Breaking News

Dear DAWN Investigators:

Today, the DAWN DSMB has performed an interim analysis of the first 200 enrolled subjects in DAWN. It is with great excitement that we announce that based on crossing of pre-specified probability thresholds for efficacy, the DSMB recommended trial enrollment to be stopped.


DAWN in Full Daylight

<u>D</u>WI or CTP <u>Assessment with Clinical Mismatch</u> in the Triage of <u>Wake-Up and Late Presenting Strokes</u> Undergoing <u>Neurointervention with Trevo</u>


Tudor G. Jovin MD & Raul G. Nogueira MD on behalf of the DAWN investigators

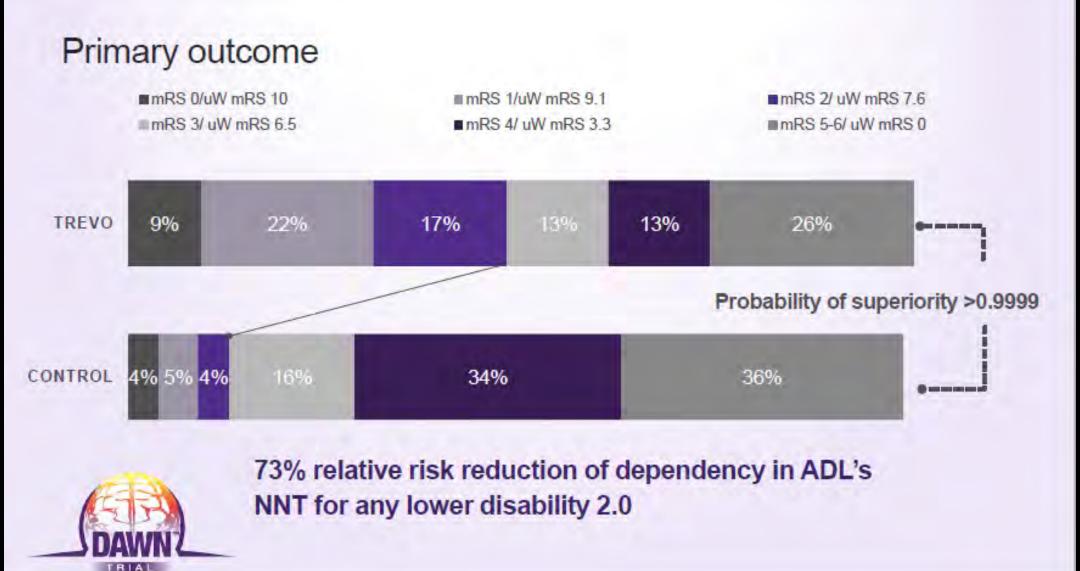

Study Methods: Workflow

TRIAL ENROLLMENT RATE AND TERMINATION

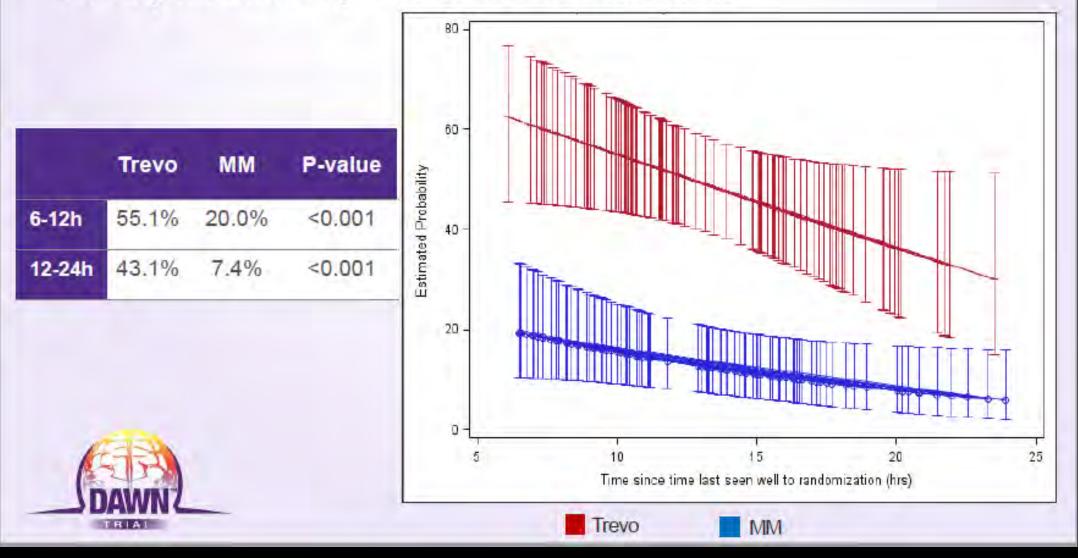
Results

Patient presentation

	Treatment arm N=107	Control arm N=99	P- value
Time since time last seen well	to randomization (hrs)		
Mean ± SD Median (Q1, Q3) Range (min, max)	13.4 ± 4.1 12.2 (10.2, 16.0) (6.1, 23.5)	13.0 ± 4.5 13.2 (9.4, 15.8) (6.4, 23.9)	0.53
Stroke sub-population			
Wake up stroke	64.5%	47.5%	0.01
Witnessed stroke	10.3%	14.1%	0.52
Un-witnessed stroke	25.2%	38.4%	0.05


Co-primary endpoints

	Trevo	ММ	Treatment benefit (95% CI)	Bayesian probability of superiority
Day 90 weighted mRS	5.5 ± 3.8	3.4 ± 3.1	2.1 (1.20, 3.12)	>0.9999*
Day 90 mRS (0-2)	48.6%	13.1%	35.5% (23.9%, 47.0%)	>0.9999*


NNT for 90-day functional independence = 2.8

*Similar to p<0.0001

90 Day mRS 0-2 by TLSW to Randomization

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									
>200%									
150-199%	\sim								
100-149%									
50-99%									
20-49%									

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									
>200%									
150-199%	\sim								
100-149%									
50-99%									
20-49%									

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									
>200%			\sim	1	\checkmark	\checkmark	\checkmark	\checkmark	
150-199%	\sim		V		V	V	V		
100-149%									
50-99%									
20-49%									

Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3

- Entry criteria
 - » 6-16h after onset
 - Target mismatch profile on DWI/PWI MRI or CTP
 - Ischemic core < 70 cc</p>
 - Mismatch ratio \geq 1.8
 - Penumbra (mismatch) volume
 ≥ 15 cc
- Sample size
 - >> Adaptive design
 - Up to 476 patients
 - First interim efficacy analysis planned at 200
 - (Stopped for efficacy at 182)

Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3

- Entry criteria
 - > 6-16h after onset
 - Target mismatch profile on DWI/PWI MRI or CTP
 - Ischemic core < 70 cc</p>
 - Mismatch ratio \geq 1.8
 - Penumbra (mismatch) volume
 ≥ 15 cc
- Sample size
 - » Adaptive design
 - Up to 476 patients
 - First interim efficacy analysis planned at 200
 - (Stopped for efficacy at 182)

July 26, 2017

DEFUSE 3 – DSMB has halted the trial permanently because of a high likelihood of efficacy in the endovascular treatment group. The Study is currently under continuing review.

Data cleaning is underway. Please complete the 90 day visits as soon as possible so they can get the database cleaned and locked.

3

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									
>200%			\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	
150-199%	\sim				V	V	$\mathbf{\vee}$	\mathbf{V}	
100-149%	\sim								
50-99%									
20-49%									

3

Mismatch	0-3h	3-6h	6- 7h	7- 8h	8-12h	12-16h	16-20h	20-24h	>24h
Not performed									
>200%			\sim	1	\checkmark	\checkmark	\checkmark	\checkmark	
150-199%	\sim			1	\checkmark		V	$\mathbf{\vee}$	
100-149%	$\mathbf{\nabla}$				V	V			
50-99%									
20-49%									

Population Impact of Imaging Selection for Additional Patients Who Benefit from Thrombectomy

Acute (<24h) Ischemic Stroke Subtypes	Percent	Number per Year
All	100%	600,000
LVO	40%	240,000
LVO < 6h (70%)	28%	168,000

UCLA Stroke Center

--Smith et al, Stroke 2009; van Seeters et al, Cerebrovasc Dis 2015; Tong et al, Stroke 2012; Malhotra and Saver, Stroke 2017 (abstract); Darby et al, Stroke 1999

Population Impact of Imaging Selection for Additional Patients Who Benefit from Thrombectomy

Acute (<24h) Ischemic Stroke Subtypes	Percent	Number per Year
All	100%	600,000
LVO	40%	240,000
LVO < 6h (70%)	28%	168,000
LVO 6-24h (30%)	12%	72,000
LVO 6-24h DAWN eligible (15%)	2%	12,240
LVO 6-24h DEFUSE 3 eligible (30%)	4%	24,480

UCLA Stroke Center

--Smith et al, Stroke 2009; van Seeters et al, Cerebrovasc Dis 2015; Tong et al, Stroke 2012; Malhotra and Saver, Stroke 2017 (abstract); Darby et al, Stroke 1999

Population Impact of Imaging Selection for Additional Patients Who Benefit from Thrombectomy

Acute (<24h) Ischemic Stroke Subtypes	Percent	Number per Year
All	100%	600,000
LVO	40%	240,000
LVO < 6h (70%)	28%	168,000
LVO 6-24h (30%)	12%	72,000
LVO 6-24h DAWN eligible (15%)	2%	12,240
LVO 6-24h DEFUSE 3 eligible (30%)	4%	24,480
LVO 6-24h all who benefit (50%?)	6%?	36,720?

UCLA Stroke Center

--Smith et al, Stroke 2009; van Seeters et al, Cerebrovasc Dis 2015; Tong et al, Stroke 2012; Malhotra and Saver, Stroke 2017 (abstract); Darby et al, Stroke 1999

Stroke Systems: Two Four Tier US Model

EMS

- --Trained dispatchers, high priority triage
- --Paramedics trained in stroke recognition (e.g. LAPSS)
- --Deliver patients to nearest stroke capable hospital
- --Pre-arrival notification

• <u>Spokes</u>

- Stroke Ready Hospitals (SRHs)
 - --Able to provide initial, ED care, often via telemedicine --Able to use rt-PA and other acute therapies safely and efficiently
- Primary Stroke Centers (PSCs)

 - --Able to provide initial, ED care --Able to use rt-PA and other acute therapies in a safe and efficient manner
 - --Have Stroke Units and can admit patients

Hubs

- Thrombectomy Stroke Centers (TSCs)
 -- Able to provide endovascular thrombectomy but not other advanced care
- Comprehensive Stroke Centers (CSCs)
 - --Able to care for all complex patients
 - --Advanced treatments (i.e. coils, clips, stents, endovascular recanalization, etc)

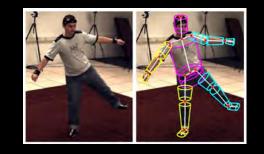
--Trained specialists in key areas (Vascular neurology, Neurointerventional procedures, Neurocritical Care, Vascular Neurosurgery)

Warning Signs and Activation of EMS System

Ubiquitous Computing and Ambient Intelligence Accelerated Stroke Onset Detection

Las Vegas Casinos

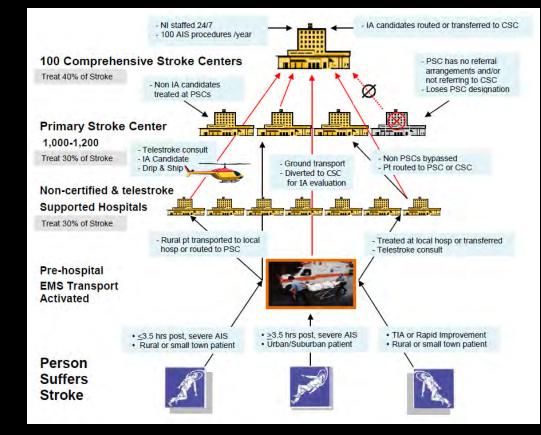
Home Cameras Home Health Robots



Computer Vision and Acclerometer Fall Detection

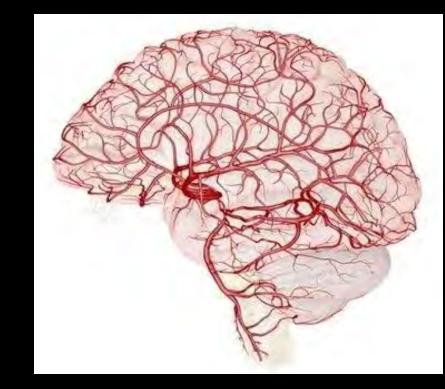
(also wearable pajamas)

UCLA Stroke Center



--Example: Leone et al. Detecting falls with 3d range camera in ambient assisted living applications. Medical Engineering & Physics 2011

Advanced Stroke Center Buildout


- Comprehensive Stroke Centers
 2011
 - AHA CSC metrics paper
 - TJC technical advisory panel
 - » 2012
 - TJC pilot testing
 - » 2012-2013
 - National CSC certification
 - » 2014
 - CSC Performance Measures
- Thrombectomy Stroke Centers
 » 2018
 - National TSC certification

--Saver et al, Stroke Interventionalist 2013

Identifying Likely Large Vessel Occlusion Patients in Field

- Medium (distal) vessel and small (penetrator) occlusions
 » IV tPA - works well, want asap
 - >> Thrombectomy not an option
 - » Primary Stroke Center or Acute Stroke Ready Hospital
- Large vessel occlusions
 - » IV tPA works poorly
 - >> Thrombectomy works well
 - >> Comprehensive Stroke Center

Routing Protocols in Tiered Systems: ASRHs, PSCs, CSCs

Tiered routing options

- » None
- » Time (e.g. 3.5-6h)
- » Severity (e.g. LAMS 4-5)
- » Type (H/A, ICH)

Considerations

- >> Urban v rural
- » Geography
- >> Traffic
- » Resources
- » Minimize time out of service area

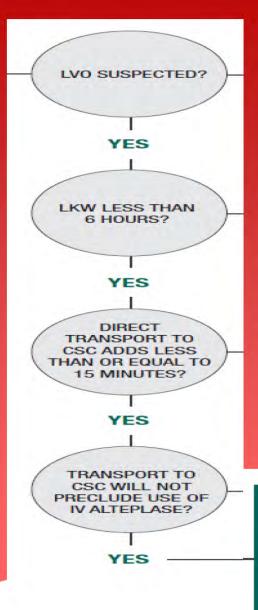
AHA/ASA Policy Statement

Interactions Within Stroke Systems of Care A Policy Statement From the American Heart Association/American Stroke Association

Randall Higashida, MD, FAHA, Chair*; Mark J. Alberts, MD, FAHA, Co-Chair*; David N. Alexander, MD; Todd J. Crocco, MD; Bart M. Demaerschalk, MD; Colin P. Derdeyn, MD, FAHA; Larry B. Goldstein, MD, FAHA;
Edward C. Jauch, MD, MS, FAHA; Stephan A. Mayer, MD, FAHA; Neil M. Meltzer, MPH;
Eric D. Peterson, MD, FAHA; Robert H. Rosenwasser, MD, FAHA; Jeffrey L. Saver, MD, FAHA; Lee Schwamm, MD, FAHA; Debbie Summers, RN, MSN, ACNS-BC, FAHA; Lawrence Wechsler, MD, FAHA; Joseph P. Wood, MD, JD; on behalf of the American Heart Association Advocacy Coordinating Committee

Comprehensive Stroke Center Routing Within Regional Systems of Care

- IV TPA ineligible
 » Direct to CSC
 » 3.5-7 hours after onset
- IV TPA eligible
 - » Drip and ship
 - Faster IV TPA, slower cath
 - » Mothership
 - Slower IV TPA, faster cath
 - Large vessel occlusion
 - » LAMS 4-5
 - Likely hemorrhage
 - » BATmobile trip (mobile CT)
 - Fastest IV TPA, fast cath



SEVERITY-BASED STROKE TRIAGE ALGORITHM FOR EMS

Mission: Lifeline Stroke has developed this algorithm to help ensure the **RIGHT** patient is brought to the **RIGHT** stroke center **RIGHT** on time.

Go Directly to CSC IF:

Severity Screen (++)

+

LKW < 6 Hours

+

Transport to CSC Add: < 15 min

+

Transport to CSC Does Not Place Patient Outside Thrombolysis Window

Call Stroke Alert, pre-notify receiving facility and transport directly to an appropriately certified CSC that is within the acceptable transport time, if no CSC meets the criteria then transport to the nearest designated EVT-capable center, or closest appropriate stroke center (ASRH,PSC) per your regional stroke system of care plan

Any 'NO' then Go to Nearest/Closest Appropriate Facility Per Regional Plan

Examples of Prehospital Stroke Scales to Identify LVO

- Los Angeles Motor Scale (LAMS)
 - » 3 elements
 - » Facial droop, arm drift, grip weakness
- 3 Item Stroke Scale (3I-SS)
 - >> 6 elements
 - >> Level of consciousness, gaze deviation, facial droop, arm drift, R/L leg weakness
- Rapid Arterial OcClusion Evaluation Score (RACE)
 - > 7 elements
 - » Facial droop, arm drift, R/L leg weakness, gaze deviation, aphasia, denial of hemiparesis
- Cincinnati Prehospital Stroke Severity Scale (CPSSS)
 - >> 4 elements
 - » Gaze deviation, arm drift, LOC command, LOC questions
- Field Assessment Stroke Triage for Emergency Destination (Fast-ED)
 - >> 5 elements
 - » Face, Arm weakness, speech, eye deviation, Denial/Neglect
- VAN
 - >> 3 elements
 - » Vision, Aphasia, Neglect

KISS Principle in Prehospital Care

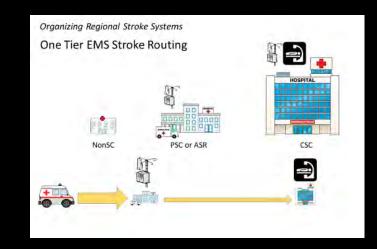
LAMS					
Facial Droop					
Absent	0				
Present	1				
Arm Drift					
Absent	0				
Drifts Down	1				
Falls Rapidly	2				
Grip Strength					
Normal	0				
Weak Grip	1				
No Grip	2				

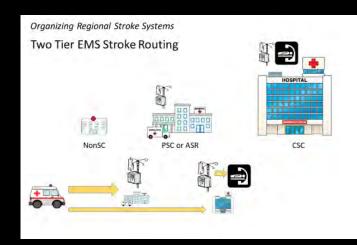
RACE						
Facial Palsy						
Absent	0					
Mild	1					
Mod-severe	2					
Arm Motor Fxn						
Normal to mild	0					
Moderate	1					
Severe	2					
Leg Motor Fxn						
Normal to mild	0					
Moderate	1					
Severe	2					
Head + Gaze Dev						
Absent	0					
Present	1					
Aphasia (if right HP)	1					
Normal to mild	0					
Moderate	1					
Severe	2					
Agnosia (if left HP)	1					
Normal to mild	0					
Moderate	1					
Severe	2					

LAMS Comparable to or Better than 6 Other Proposed Prehospital LVO Scales and the Full NIHSS

LVO among All Acute Cerebral Ischemia Transports

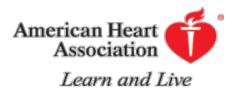
	Sensitivity	Specificity	PPV	NPV	Accuracy
Prehospital					
LAMS	0.74	0.63	0.79	0.56	0.70
ED					
LAMS	0.63	0.79	0.85	0.53	0.69
CPSSS	0.54	0.88	0.89	0.50	0.66
FAST-ED	0.54	0.83	0.86	0.49	0.64
PASS	0.57	0.83	0.87	0.50	0.66
RACE	0.54	0.79	0.83	0.48	0.63
VAN	0.57	0.71	0.79	0.46	0.61
3i-SS	0.41	0.96	0.95	0.46	0.60
NIHSS ≥ 7	0.65	0.67	0.79	0.50	0.66
NIHSS ≥ 10	0.54	0.83	0.86	0.49	0.64


CSC-Appropriate (LVO+ICH) among All Suspected Stroke Transports


	Sensitivity	Specificity	PPV	NPV	Accuracy
Prehospital					
LAMS	0.70	0.68	0.84	0.49	0.69
ED					
LAMS	0.67	0.79	0.88	0.50	0.70
CPSSS	0.48	0.86	0.89	0.41	0.60
FAST-ED	0.53	0.82	0.88	0.43	0.62
PASS	0.55	0.82	0.88	0.43	0.63
RACE	0.56	0.79	0.86	0.43	0.63
VAN	0.59	0.71	0.83	0.43	0.63
3i-SS	0.38	0.93	0.93	0.39	0.54
NIHSS ≥7	0.71	0.68	0.84	0.50	0.70
NIHSS ≥ 10	0.56	0.82	0.88	0.44	0.64

RACECAT Trial

- Cluster-control RCT Spain
 » 12 hospitals, 1754 patients
- Key entry criteria
 - » LVO by RACE and teleneurology
 - Can reach an EVT-SC within 7h of onset
- Randomized strata
 - » Daytime vs evening
 - » Weekday vs weekend
 - >> Urban vs rural
- Outcome: mRS 0-2
- Timeline: 2017-2020


Stroke physician prehospital real-time telestroke assessment of the National Institutes of Health Stroke Scale in the moving ambulance

Liman T G et al. Stroke 2012;43:2086-2090

Figure 1 iTREAT ambulance setup with cradled iPad and suction mounting

Copyright © American Heart Association

Mobile Technologies


(other than CT)

- Ultrasound
 » Burl Sonas
 » Neural Analytics
 EEG
 - » Samsung EDSAP
- Near infra-red
 » B+W Tek i-Spec
- Microwave
 - » Australia Strokefinder helmet

UCLA Stroke Center

Acute Ischemic Stroke Treatment 1.0: IV TPA and Moderately Effective Endovascular Therapy



EMS

Primary Stroke Center

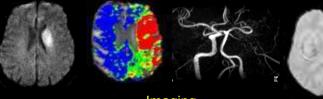
IV Lytic

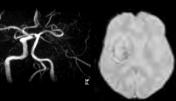
Acute Ischemic Stroke Treatment 2.0: Highly Effective Recanalization - Fast and Furious

Symptoms

911

EMS


Neuroprotectants



Primary Stroke Center

Imaging

Imaging

Comp Stroke Center

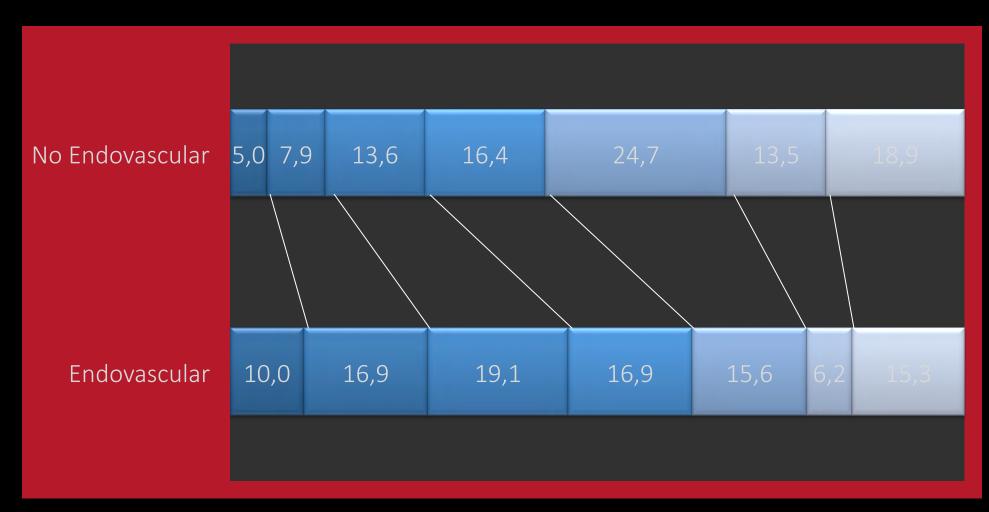
EMS

IV Lytic

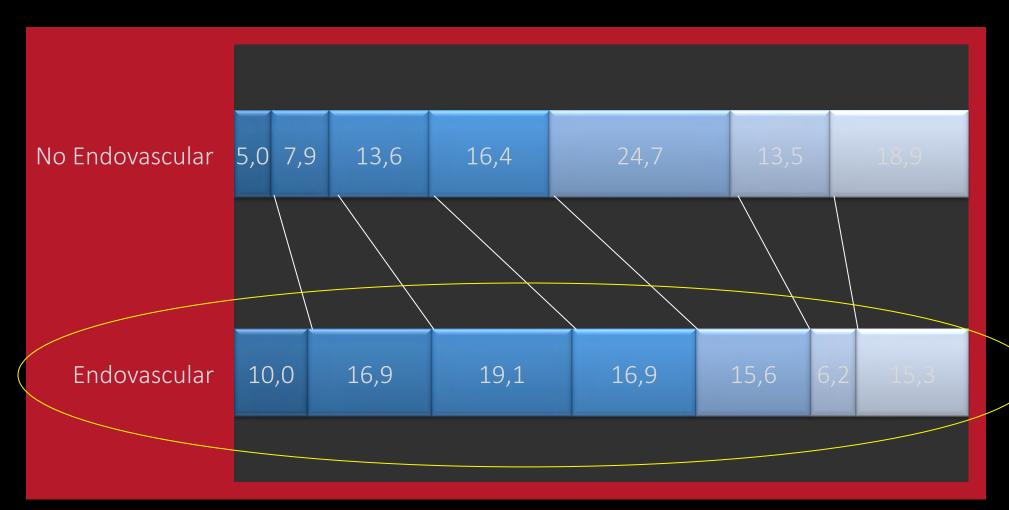
Cath Lab

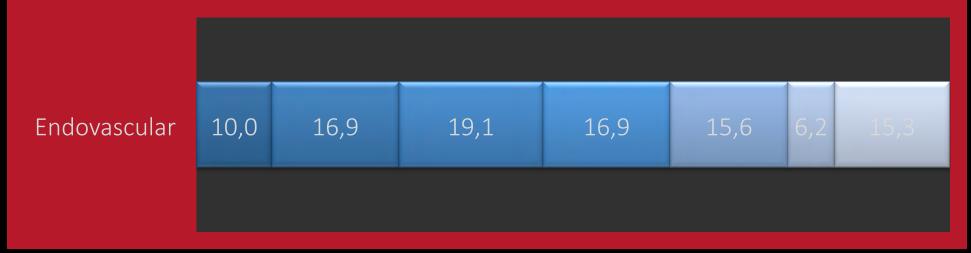
UCLA Stroke Center

Angiogram

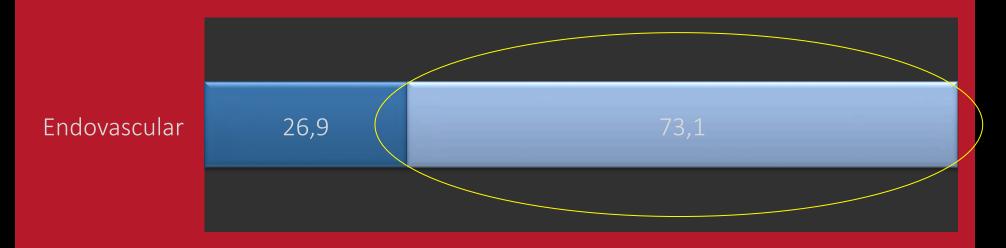


Neuroprotectants




Stroke Unit


Are We Done Yet? Second Generation Neurothrombectomy Therapy Outcome Across All Disability Levels (5 Trials – HERMES)



UCLA Stroke Center

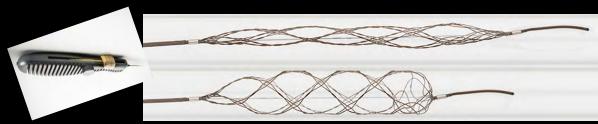
What Do We Need

- More REPERFUSION
- More SALVAGEABLE BRAIN
- Less BLEEDING
- More PATIENTS

What Do We Need

More REPERFUSION

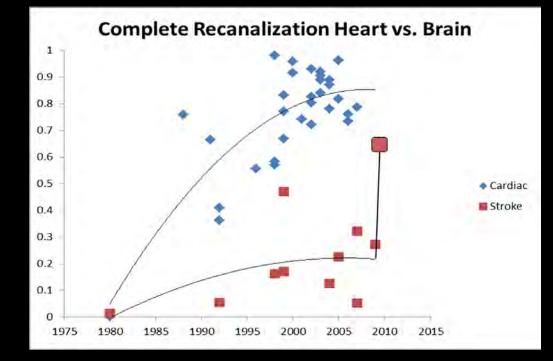
- » Better devices
- » Better combinations of lytics and devices
- More SALVAGEABLE BRAIN
 - » Preprocedure neuroprotection / collateral enhancement
 - » Faster onset to puncture
 - Hospital processes of care
 - EMS systems of care
- Less BLEEDING
 - » Skip tPA (?)
 - » Deter reperfusion injury
- More PATIENTS
 - » Expand time window with standard selection
 - > Expand time window with imaging selection


Building Next Generation of Clinical Trials that Will Positively Impact an Emerging Field

Intervention Type	Special Trial Aspects	Example Comparisons	Target Patients
New Devices	TICI reperfusion as primary surrogate endpoint	Device A vs B	Large artery occlusions
Reperfusion	Active	IVT+ERT vs ERT alone	ICA occlusions
Strategies	Comparator	IVT+ERT vs IVT alone	M2 occlusions
Prehospital Neuroprotection	ED imaging endpoints	NA1, hypothermia, RIPC, NTG vs control	EMS transported patients
Systems of Care	Cluster randomization; stepped wedge	EMS routing – PSCs first versus CSCs first	Severe deficits
Deter Reperfusion Injury	IA admin	Free radical scavengers vs control	Post-successful TICI 2b/3 reperfusion
Imaging Selection	6-24h	ERT vs no ERT	Wake-up and late

Retrievers

- » Solitaire (Medtronic)
- » Trevo (Stryker)
- Catch (Balt)
- >> Preset (Phenox)
- » EmboTrap (Neuravia)
- Separator 3D (Penumbra)
- >> Revive (Codman)
- » Mindframe (Medtronic)
- Solden (Amnis)
- » Tigertriever (Rapid Medical)
- Aspiration catheters
 - » Max ACE (Penumbra)
 - » Arc (Medtronic)
 - » SOFIA (Microvention)
 - > Cat-6 (Stryker)

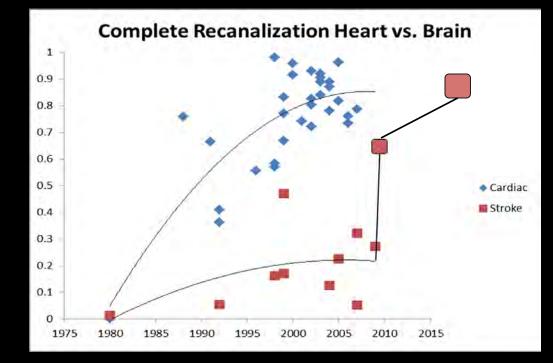


Retrievers

- » Solitaire (Medtronic)
- » Trevo (Stryker)
- >> Catch (Balt)
- >> Preset (Phenox)
- » EmboTrap (Neuravia)
- » Separator 3D (Penumbra)
- >> Revive (Codman)
- » Mindframe (Medtronic)
- Solden (Amnis)
- » Tigertriever (Rapid Medical)

Aspiration catheters

- » Max ACE (Penumbra)
- » Arc (Medtronic)
- » SOFIA (Microvention)
- > Cat-6 (Stryker)

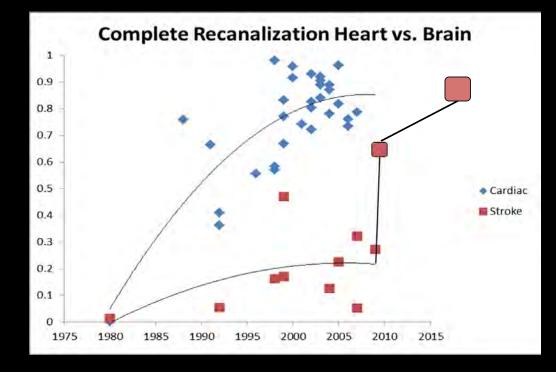


Retrievers

- » Solitaire (Medtronic)
- >> Trevo (Stryker)
- > Catch (Balt)
- > Preset (Phenox)
- >> EmboTrap (Neuravia)
- » Separator 3D (Penumbra)
- >> Revive (Codman)
- » Mindframe (Medtronic)
- Solden (Amnis)
- » Tigertriever (Rapid Medical)

Aspiration catheters

- » Max ACE (Penumbra)
- » Arc (Medtronic)
- » SOFIA (Microvention)
- > Cat-6 (Stryker)

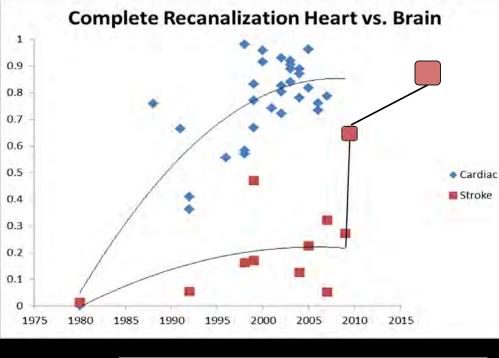


Retrievers

- » Solitaire (Medtronic)
- >> Trevo (Stryker)
- > Catch (Balt)
- > Preset (Phenox)
- >> EmboTrap (Neuravia)
- Separator 3D (Penumbra)
- >> Revive (Codman)
- » Mindframe (Medtronic)
- Solden (Amnis)
- » Tigertriever (Rapid Medical)

Aspiration catheters

- » Max ACE (Penumbra)
- » Arc (Medtronic)
- » SOFIA (Microvention)
- » Cat-6 (Stryker)

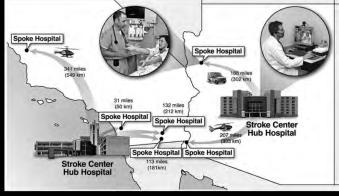


Retrievers

- » Solitaire (Medtronic)
- » Trevo (Stryker)
- >> Catch (Balt)
- >> Preset (Phenox)
- » EmboTrap (Neuravia)
- » Separator 3D (Penumbra)
- >> Revive (Codman)
- » Mindframe (Medtronic)
- Solden (Amnis)
- » Tigertriever (Rapid Medical)

Aspiration catheters

- » Max ACE (Penumbra)
- » Arc (Medtronic)
- » SOFIA (Microvention)
- » Cat-6 (Stryker)


Neuroprotective Trial Designs in the Thrombectomy Era

NP in the Ambulance

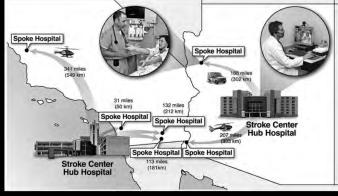
NP during Hosp Tx

NP Door to Reperf

FAST- MAG	Number of Patients	NP to Reperf Tx Start Time
IV tPA	452 (27%)	1h 32m
EVT	76 (5%)	3h 50m

- Enroll at PSCs, ASRHs
 » Tele-enrollment
- NP infusion during interval from OSH to endovascular hospital
- "Drip, ship, NiP, and grip"

- Enroll at PSCs, ASRHs
 Tele-enrollment
- NP infusion during interval from OSH to endovascular hospital
- "Drip, ship, NiP, and grip"


Neuroprotective Trial Designs in the Thrombectomy Era

NP in the Ambulance

NP during Hosp Tx

NP Door to Reperf

FAST- MAG	Number of Patients	NP to Reperf Tx Start Time
IV tPA	452 (27%)	1h 32m
EVT	76 (5%)	3h 50m

- Enroll at PSCs, ASRHs
 » Tele-enrollment
- NP infusion during interval from OSH to endovascular hospital
- "Drip, ship, NiP, and grip"

- Enroll at PSCs, ASRHs
 » Tele-enrollment
- NP infusion during interval from OSH to endovascular hospital
- "Drip, ship, NiP, and grip"

<u>Trials</u> RIGHT-2 ESCAPE NA1

Give or Skip IV tPA

Pro Combination

- Faster reperfusion
 - Faster start of IV Rx faster reperfusion in IV responders
 - » Increased first-pass response
- More reperfusion
 - » Higher ERT reperfusion rate
 - » Reperfusion in ERT non-deployable pts
 - » High IV Rx reperfusion in EMVO
- Cleaner distal vessels
 - Dissolve distal thrombus fragments from ERT
- Target occlusion characterization
 - » Reveal *in situ* athero

Against Combination

- Slower reperfusion
 - Consent and set-up of IV Rx may slow start of ERT
- Little additional reperfusion
 > Low IV Rx reperfusion in ELVO
- More hemorrhage
- Higher cost

Give or Skip IV tPA

Pro Combination

- Faster reperfusion
 - Faster start of IV Rx faster reperfusion in IV responders
 - » Increased first-pass response
- More reperfusion
 - » Higher ERT reperfusion rate
 - » Reperfusion in ERT non-deployable pts
 - » High IV Rx reperfusion in EMVO
- Cleaner distal vessels
 - Dissolve distal thrombus fragments from ERT
- Target occlusion characterization
 - » Reveal *in situ* athero

Against Combination

- Slower reperfusion
 - Consent and set-up of IV Rx may slow start of ERT
- Little additional reperfusion
 > Low IV Rx reperfusion in ELVO
- More hemorrhage
- Higher cost

<u>Trials</u>

MR CLEAN Family SWIFT Direct

"The outcome of any serious research can only be to make two questions grow where only one grew before" (Veblen)

Intervention Type	Special Trial Aspects	Example Comparisons	Target Patients
New Devices	TICI reperfusion as primary surrogate endpoint	Device A vs B	Large artery occlusions
Reperfusion	Active	IVT+ERT vs ERT alone	ICA occlusions
Strategies	Comparator	IVT+ERT vs IVT alone	M2 occlusions
Prehospital Neuroprotection	ED imaging endpoints	NA1, hypothermia, RIPC, NTG vs control	EMS transported patients
Systems of Care	Cluster randomization; stepped wedge	EMS routing – PSCs first versus CSCs first	Severe deficits
Deter Reperfusion Injury	IA admin	Free radical scavengers vs control	Post-successful TICI 2b/3 reperfusion
Imaging Selection	6-24h	ERT vs no ERT	Wake-up and late

Acknowledgments (>2000)

Stroke Neurology

David Liebeskind, MD
Latisha Ali, MD
Jason Hinman, MD
Doojin Kim, MD
Chelsea Kidwell, MD
May Nour, MD
Bruce Ovbiagele, MD
Neil Rao, MD
Emergency Medicine
Sidney Starkman, MD
Marc Eckstein, MD
Bill Koenig, MD
Frank Pratt, MD
Sam Stratton, MD
Neurocritical Care
Paul Vespa, MD

	J
Neurointerventional	J
Reza Jahan, MD	J
Satoshi Tateshima, MD	Ne
Gary Duckwiler, MD	C
Nestor Gonzalez, MD	Т
Victor Szeder, MD	B
Fernando Vinuela, MD	A
Neurosurgery	Ne
Neil Martin, MD	J
John Frazee, MD	S
Diagn Neuroradiology	S
Diagn Neuroradiology Pablo Villablanca, MD	s >
	٧
Pablo Villablanca, MD	
Pablo Villablanca, MD Noriko Salamon, MD	۷ Nu

M Buitrago-Blanco, MDBrain Mapping

UCLA Stroke Center


	Jeffry R. Alger, PhD
	John Mazziotta, MD
	JJ Wang, PhD
	Neurorehabilitation
	David Alexander, MD
	Tom Carmichael, MD
	Bruce Dobkin, MD
)	Andrew Dorsch, MD
	Neuroinformatics
	Jeffrey Gornbein, PhD
	Scott Hamilton, PhD
	Scott Brown, PhD
)	Val Nenov, PhD
	Nurse Coordinators
	Judy Guzy, RN
	lleana Grunberg, RN
	Rodel Aflonso, RN

Stroke Fellows and

Residents

UCLA Ronald Reagan Medical Center

